These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38871112)

  • 1. Targeting hematological malignancies with isoxazole derivatives.
    Majirská M; Pilátová MB; Kudličková Z; Vojtek M; Diniz C
    Drug Discov Today; 2024 Aug; 29(8):104059. PubMed ID: 38871112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rise of apoptosis: targeting apoptosis in hematologic malignancies.
    Valentin R; Grabow S; Davids MS
    Blood; 2018 Sep; 132(12):1248-1264. PubMed ID: 30012635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential.
    Zhang Y; Zhou X
    Biomed Pharmacother; 2024 Jun; 175():116667. PubMed ID: 38703504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemokine receptor CXCR4: An important player affecting the molecular-targeted drugs commonly used in hematological malignancies.
    Li L; Chai Y; Wu C; Zhao L
    Expert Rev Hematol; 2020 Dec; 13(12):1387-1396. PubMed ID: 33170753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies.
    Arya GC; Kaur K; Jaitak V
    Eur J Med Chem; 2021 Oct; 221():113511. PubMed ID: 34000484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The recent progress of isoxazole in medicinal chemistry.
    Zhu J; Mo J; Lin HZ; Chen Y; Sun HP
    Bioorg Med Chem; 2018 Jul; 26(12):3065-3075. PubMed ID: 29853341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MUC1 in hematological malignancies.
    Stroopinsky D; Kufe D; Avigan D
    Leuk Lymphoma; 2016 Nov; 57(11):2489-98. PubMed ID: 27347699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug resistance-related microRNAs in hematological malignancies: translating basic evidence into therapeutic strategies.
    Xie L; Jing R; Qi J; Lin Z; Ju S
    Blood Rev; 2015 Jan; 29(1):33-44. PubMed ID: 25263425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents.
    Kamal A; Shaik AB; Rao BB; Khan I; Bharath Kumar G; Jain N
    Org Biomol Chem; 2015 Oct; 13(40):10162-78. PubMed ID: 26303171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies.
    Ghosh S; Lalani R; Patel V; Bardoliwala D; Maiti K; Banerjee S; Bhowmick S; Misra A
    J Control Release; 2019 Feb; 296():114-139. PubMed ID: 30664978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing venetoclax activity in hematological malignancies.
    Satta T; Grant S
    Expert Opin Investig Drugs; 2020 Jul; 29(7):697-708. PubMed ID: 32600066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies?
    Brinkmann K; Kashkar H
    Cell Death Dis; 2014 Mar; 5(3):e1098. PubMed ID: 24603326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artemisinin-type drugs for the treatment of hematological malignancies.
    Mancuso RI; Foglio MA; Olalla Saad ST
    Cancer Chemother Pharmacol; 2021 Jan; 87(1):1-22. PubMed ID: 33141328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BIIB021, an Hsp90 inhibitor: A promising therapeutic strategy for blood malignancies (Review).
    He W; Hu H
    Oncol Rep; 2018 Jul; 40(1):3-15. PubMed ID: 29749536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel therapeutic approach for hematological malignancies based on cellular differentiation and apoptosis.
    Kizaki M; Nakazato T; Ito K; Kawamura C; Miyakawa Y; Ikeda Y
    Int J Hematol; 2002 Aug; 76 Suppl 1():250-2. PubMed ID: 12430859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) targets tubulin and DNA to induce anticancer activity and overcome multidrug resistance in colorectal cancer cells.
    Bai Z; Liu X; Guan Q; Ding N; Wei Q; Tong B; Zhao M; Zhang W; Ma L
    Chem Biol Interact; 2020 Jan; 315():108886. PubMed ID: 31682804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Wee1 kinase as a therapeutic approach in Hematological Malignancies.
    Vakili-Samiani S; Turki Jalil A; Abdelbasset WK; Yumashev AV; Karpisheh V; Jalali P; Adibfar S; Ahmadi M; Hosseinpour Feizi AA; Jadidi-Niaragh F
    DNA Repair (Amst); 2021 Nov; 107():103203. PubMed ID: 34390915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterocyclization of 2-Arylidenecyclohexan-1,3-dione: Synthesis of Thiophene, Thiazole, and Isoxazole Derivatives with Potential Antitumor Activities.
    Abdo NYM; Mohareb RM; Al-Darkazali WN
    Anticancer Agents Med Chem; 2020; 20(3):335-345. PubMed ID: 31362693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of resistance to proteasome inhibitors in hematological malignancies.
    Niewerth D; Jansen G; Assaraf YG; Zweegman S; Kaspers GJ; Cloos J
    Drug Resist Updat; 2015 Jan; 18():18-35. PubMed ID: 25670156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.