These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Complete mitochondrial genome of the pine moth Kim MJ; Kim JS; Kim SS; Kim SR; Kim I Mitochondrial DNA B Resour; 2016 Mar; 1(1):180-181. PubMed ID: 33644337 [TBL] [Abstract][Full Text] [Related]
23. Mitochondrial phylogenomics and genetic relationships of closely related pine moth (Lasiocampidae: Dendrolimus) species in China, using whole mitochondrial genomes. Qin J; Zhang Y; Zhou X; Kong X; Wei S; Ward RD; Zhang AB BMC Genomics; 2015 Jun; 16(1):428. PubMed ID: 26040695 [TBL] [Abstract][Full Text] [Related]
24. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390 [TBL] [Abstract][Full Text] [Related]
25. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests. Smithers BV; North MP; Millar CI; Latimer AM Glob Chang Biol; 2018 Feb; 24(2):e442-e457. PubMed ID: 28850759 [TBL] [Abstract][Full Text] [Related]
26. Climate drivers of seed rain phenology of subtropical forest communities along an elevational gradient. Yang L; Shen Z; Wang X; Wang S; Xie Y; Larjavaara M; Zhang J; Li G Int J Biometeorol; 2023 Jun; 67(6):1095-1104. PubMed ID: 37258689 [TBL] [Abstract][Full Text] [Related]
27. Diverse responses of spring phenology to preseason drought and warming under different biomes in the North China Plain. Ji S; Ren S; Li Y; Dong J; Wang L; Quan Q; Liu J Sci Total Environ; 2021 Apr; 766():144437. PubMed ID: 33412432 [TBL] [Abstract][Full Text] [Related]
28. Late spring freezes coupled with warming winters alter temperate tree phenology and growth. Chamberlain CJ; Wolkovich EM New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291 [TBL] [Abstract][Full Text] [Related]
29. Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits ( Visser ME; Lindner M; Gienapp P; Long MC; Jenouvrier S Proc Biol Sci; 2021 Nov; 288(1963):20211337. PubMed ID: 34814747 [TBL] [Abstract][Full Text] [Related]
30. Poleward shifts in the maximum of spring phenological responsiveness of Ginkgo biloba to temperature in China. Wu Z; Fu YH; Crowther TW; Wang S; Gong Y; Zhang J; Zhao YP; Janssens I; Penuelas J; Zohner CM New Phytol; 2023 Nov; 240(4):1421-1432. PubMed ID: 37632265 [TBL] [Abstract][Full Text] [Related]
31. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. Jin H; Jönsson AM; Olsson C; Lindström J; Jönsson P; Eklundh L Int J Biometeorol; 2019 Jun; 63(6):763-775. PubMed ID: 30805728 [TBL] [Abstract][Full Text] [Related]
32. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Güsewell S; Furrer R; Gehrig R; Pietragalla B Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135 [TBL] [Abstract][Full Text] [Related]
34. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity. Matías L; Linares JC; Sánchez-Miranda Á; Jump AS Glob Chang Biol; 2017 Oct; 23(10):4106-4116. PubMed ID: 28100041 [TBL] [Abstract][Full Text] [Related]
35. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Chen L; Huang JG; Ma Q; Hänninen H; Rossi S; Piao S; Bergeron Y Glob Chang Biol; 2018 Sep; 24(9):3969-3975. PubMed ID: 29697173 [TBL] [Abstract][Full Text] [Related]
36. Satellite observed reversal in trends of spring phenology in the middle-high latitudes of the Northern Hemisphere during the global warming hiatus. Xiong T; Du S; Zhang H; Zhang X Glob Chang Biol; 2023 Apr; 29(8):2227-2241. PubMed ID: 36602438 [TBL] [Abstract][Full Text] [Related]
37. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Vitasse Y; Ursenbacher S; Klein G; Bohnenstengel T; Chittaro Y; Delestrade A; Monnerat C; Rebetez M; Rixen C; Strebel N; Schmidt BR; Wipf S; Wohlgemuth T; Yoccoz NG; Lenoir J Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1816-1835. PubMed ID: 33908168 [TBL] [Abstract][Full Text] [Related]
38. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Vitasse Y; Hoch G; Randin CF; Lenz A; Kollas C; Scheepens JF; Körner C Oecologia; 2013 Mar; 171(3):663-78. PubMed ID: 23306445 [TBL] [Abstract][Full Text] [Related]
39. Elevation-dependent tree growth response to climate in a natural Scots pine/downy birch forest in northern Sweden. Fassl M; Aakala T; Östlund L Plant Environ Interact; 2024 Apr; 5(2):e10140. PubMed ID: 38562245 [TBL] [Abstract][Full Text] [Related]
40. [Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest]. Qiu Y; Gao LS; Zhang X; Guo J; Ma ZY Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1870-8. PubMed ID: 25345034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]