BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38871580)

  • 1. Characterization of a novel carboxylesterase from Streptomyces lividans TK24 and site-directed mutagenesis for its thermostability.
    Fang J; An L; Yu J; Ma J; Zhou R; Wang B
    J Biosci Bioeng; 2024 Jun; ():. PubMed ID: 38871580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel hyper-thermostable and chlorpyrifos-hydrolyzing carboxylesterase EstC: A representative of the new esterase family XIX.
    Wang B; Wu S; Chang X; Chen J; Ma J; Wang P; Zhu G
    Pestic Biochem Physiol; 2020 Nov; 170():104704. PubMed ID: 32980065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a carboxylesterase with hyper-thermostability and alkali-stability from Streptomyces lividans TK24.
    Chang X; Wu S; Chen J; Xiong S; Wang P; Shi X; Wang A; Wang B
    Extremophiles; 2021 Mar; 25(2):115-128. PubMed ID: 33515353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis.
    Wei Z; Chen J; Xu L; Liu N; Yang J; Wang S
    AMB Express; 2023 Jan; 13(1):7. PubMed ID: 36656394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification.
    Lin L; Wang Y; Wu M; Zhu L; Yang L; Lin J
    Enzyme Microb Technol; 2018 Aug; 115():45-51. PubMed ID: 29859602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a novel highly thermostable esterase from the Gram-positive soil bacterium Streptomyces lividans TK64.
    Wang B; Wang A; Cao Z; Zhu G
    Biotechnol Appl Biochem; 2016 May; 63(3):334-43. PubMed ID: 26621184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis.
    Fakhravar A; Hesampour A
    Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation.
    Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST
    Enzyme Microb Technol; 2015 Sep; 77():54-60. PubMed ID: 26138400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis.
    Moreau A; Shareck F; Kluepfel D; Morosoli R
    Enzyme Microb Technol; 1994 May; 16(5):420-4. PubMed ID: 7764794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 12. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution.
    Zhao G; Wang J; Tang Q; Lan D; Wang Y
    Mol Biotechnol; 2018 Apr; 60(4):319-328. PubMed ID: 29450814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved thermostability of esterase from Aspergillus fumigatus by site-directed mutagenesis.
    Zhang S; Wu G; Feng S; Liu Z
    Enzyme Microb Technol; 2014 Oct; 64-65():11-6. PubMed ID: 25152411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond.
    Wang H; Chen H; Li Q; Yu F; Yan Y; Liu S; Tian J; Tan J
    Protein Expr Purif; 2022 Aug; 195-196():106079. PubMed ID: 35272012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The S-S bridge mutation between the A2 and A4 loops (T416C-I432C) of Cel7A of
    Dodda SR; Hossain M; Mondal S; Das S; Khator Jain S; Aikat K; Mukhopadhyay SS
    Appl Environ Microbiol; 2024 Apr; 90(4):e0232923. PubMed ID: 38440989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution.
    Zhao HY; Feng H
    BMC Biotechnol; 2018 Jun; 18(1):34. PubMed ID: 29859069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability.
    Zhou Z; Wang X
    BMC Biotechnol; 2021 May; 21(1):32. PubMed ID: 33941157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis.
    Hua Y; Lyu C; Liu C; Wang H; Hu S; Zhao W; Mei J; Huang J; Mei L
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1456-1469. PubMed ID: 32124175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.