BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38871580)

  • 21. Biochemical characterization of a carboxylesterase from the archaeon Pyrobaculum sp. 1860 and a rational explanation of its substrate specificity and thermostability.
    Shao H; Xu L; Yan Y
    Int J Mol Sci; 2014 Sep; 15(9):16885-910. PubMed ID: 25250909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

  • 24. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis.
    Chen Y; Luo Q; Zhou W; Xie Z; Cai YJ; Liao XR; Guan ZB
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1935-1944. PubMed ID: 27826721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications.
    Tong L; Zheng J; Wang X; Wang X; Huang H; Yang H; Tu T; Wang Y; Bai Y; Yao B; Luo H; Qin X
    Biotechnol Biofuels; 2021 Oct; 14(1):202. PubMed ID: 34656167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend.
    Zhang X; Zhang Y; Yang G; Xie Y; Xu L; An J; Cui L; Feng Y
    Enzyme Microb Technol; 2016 Jan; 82():34-41. PubMed ID: 26672446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans.
    Hamed MB; Karamanou S; Ólafsdottir S; Basílio JSM; Simoens K; Tsolis KC; Van Mellaert L; Guðmundsdóttir EE; Hreggvidsson GO; Anné J; Bernaerts K; Fridjonsson OH; Economou A
    Microb Cell Fact; 2017 Dec; 16(1):232. PubMed ID: 29274637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis.
    Mao S; Cheng X; Zhu Z; Chen Y; Li C; Zhu M; Liu X; Lu F; Qin HM
    Enzyme Microb Technol; 2020 Jan; 132():109441. PubMed ID: 31731964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Directed evolution and secretory expression of a pyrethroid-hydrolyzing esterase with enhanced catalytic activity and thermostability.
    Liu X; Liang M; Liu Y; Fan X
    Microb Cell Fact; 2017 May; 16(1):81. PubMed ID: 28490329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites.
    Han C; Wang Q; Sun Y; Yang R; Liu M; Wang S; Liu Y; Zhou L; Li D
    Biotechnol Biofuels; 2020; 13():30. PubMed ID: 32127917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved thermostability of creatinase from Alcaligenes Faecalis through non-biased phylogenetic consensus-guided mutagenesis.
    Bai X; Li D; Ma F; Deng X; Luo M; Feng Y; Yang G
    Microb Cell Fact; 2020 Oct; 19(1):194. PubMed ID: 33069232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11.
    Zhou C; Xue Y; Ma Y
    BMC Biotechnol; 2015 Oct; 15():97. PubMed ID: 26490269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical characterization of a novel thermostable DFA I-forming inulin fructotransferases from Streptomyces peucetius subsp. caesius ATCC 27952.
    Cheng M; Zhu Y; Chen Z; Guang C; Zhang W; Mu W
    Enzyme Microb Technol; 2020 Jun; 137():109519. PubMed ID: 32423668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis.
    Han N; Miao H; Ding J; Li J; Mu Y; Zhou J; Huang Z
    Biotechnol Biofuels; 2017; 10():133. PubMed ID: 28546828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of catalytic activity and thermostability of a thermostable cellobiohydrolase from Chaetomium thermophilum by site-directed mutagenesis.
    Han C; Li W; Hua C; Sun F; Bi P; Wang Q
    Int J Biol Macromol; 2018 Sep; 116():691-697. PubMed ID: 29775713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability.
    Liu L; Deng Z; Yang H; Li J; Shin HD; Chen RR; Du G; Chen J
    Appl Environ Microbiol; 2014 Feb; 80(3):798-807. PubMed ID: 24212581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.