These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38871747)

  • 1. Mathematical processing of RGB data in microfluidic paper-based analytical devices.
    Fiedoruk-Pogrebniak M
    Sci Rep; 2024 Jun; 14(1):13635. PubMed ID: 38871747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of acid dissociation constants of Alizarin Red S, Methyl Orange, Bromothymol Blue and Bromophenol Blue using a digital camera.
    Shalaby AA; Mohamed AA
    RSC Adv; 2020 Mar; 10(19):11311-11316. PubMed ID: 35495332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemometric challenges in development of paper-based analytical devices: Optimization and image processing.
    Hamedpour V; Oliveri P; Leardi R; Citterio D
    Anal Chim Acta; 2020 Mar; 1101():1-8. PubMed ID: 32029100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGB-Detector: A Smart, Low-Cost Device for Reading RGB Indexes of Microfluidic Paper-Based Analytical Devices.
    Pazzi BM; Pistoia D; Alberti G
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical IMRT QA dosimetry using Gafchromic film: a quick start guide.
    Bennie N; Metcalfe P
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):533-45. PubMed ID: 27098156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer.
    Asano H; Shiraishi Y
    Anal Sci; 2018; 34(1):71-74. PubMed ID: 29321462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of aquatic biomass as biosorbent for sustainable production of high surface area, nano- microporous, for removing two dyes from wastewater.
    Abdallah MAM; Alprol AE
    Sci Rep; 2024 Feb; 14(1):4471. PubMed ID: 38396122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Colorimetric Data for Paper-Based Analytical Devices.
    Soda Y; Bakker E
    ACS Sens; 2019 Dec; 4(12):3093-3101. PubMed ID: 31744290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Yxy colour space parameters as novel signalling tools for digital imaging sensors in the analytical laboratory.
    Mohamed AA; Shalaby AA; Salem AM
    RSC Adv; 2018 Mar; 8(19):10673-10679. PubMed ID: 35540446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traffic light type paper-based analytical device for intuitive and semi-quantitative naked-eye signal readout.
    Ohta S; Hiraoka R; Hiruta Y; Citterio D
    Lab Chip; 2022 Feb; 22(4):717-726. PubMed ID: 35059696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-of-care colorimetric detection with a smartphone.
    Shen L; Hagen JA; Papautsky I
    Lab Chip; 2012 Nov; 12(21):4240-3. PubMed ID: 22996728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.
    Werts MH; Raimbault V; Texier-Picard R; Poizat R; Français O; Griscom L; Navarro JR
    Lab Chip; 2012 Feb; 12(4):808-20. PubMed ID: 22228225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equipment-Free Detection of K
    Soda Y; Citterio D; Bakker E
    ACS Sens; 2019 Mar; 4(3):670-677. PubMed ID: 30702271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-stimuli programmable FRET based RGB absorbing antennae towards ratiometric temperature, pH and multiple metal ion sensing.
    Rani K; Sengupta S
    Chem Sci; 2021 Dec; 12(47):15533-15542. PubMed ID: 35003582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of phosphorus in water and chemical fertilizer samples using a simple drawing microfluidic paper-based analytical device.
    Phansi P; Janthama S; Cerdà V; Nacapricha D
    Anal Sci; 2022 Oct; 38(10):1323-1332. PubMed ID: 35876988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification.
    Wu D; Ding Y; Zhang Y; Pan D; Li J; Hu Y; Xu B; Chu J
    Lab Chip; 2021 Dec; 21(24):4805-4813. PubMed ID: 34734609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of paper based microfluidic devices for size based separation and extraction applications.
    Zhong ZW; Wu RG; Wang ZP; Tan HL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Sep; 1000():41-8. PubMed ID: 26209769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples.
    de Carvalho Oliveira G; Machado CCS; Inácio DK; Silveira Petruci JFD; Silva SG
    Talanta; 2022 May; 241():123244. PubMed ID: 35121545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.