These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38871868)
1. Comparative studies on substrate specificity of succinic semialdehyde reductase from Gluconobacter oxydans and glyoxylate reductase from Acetobacter aceti. Majumder TR; Inoue M; Aono R; Ochi A; Mihara H Biosci Biotechnol Biochem; 2024 Aug; 88(9):1069-1072. PubMed ID: 38871868 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel class of glyoxylate reductase belonging to the β-hydroxyacid dehydrogenase family in Kumsab J; Tobe R; Kurihara T; Hirose Y; Omori T; Mihara H Biosci Biotechnol Biochem; 2020 Nov; 84(11):2303-2310. PubMed ID: 32729375 [TBL] [Abstract][Full Text] [Related]
3. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes. Meyer M; Schweiger P; Deppenmeier U Appl Microbiol Biotechnol; 2015 May; 99(9):3929-39. PubMed ID: 25425279 [TBL] [Abstract][Full Text] [Related]
4. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants. Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009 [TBL] [Abstract][Full Text] [Related]
5. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle. Kiefler I; Bringer S; Bott M Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411 [TBL] [Abstract][Full Text] [Related]
6. Selective determination of the catalytic cysteine pK Phonbuppha J; Maenpuen S; Munkajohnpong P; Chaiyen P; Tinikul R FEBS J; 2018 Jul; 285(13):2504-2519. PubMed ID: 29734522 [TBL] [Abstract][Full Text] [Related]
7. Kinetic characterization and molecular modeling of NAD(P)(+)-dependent succinic semialdehyde dehydrogenase from Bacillus subtilis as an ortholog YneI. Park SA; Park YS; Lee KS J Microbiol Biotechnol; 2014 Jul; 24(7):954-8. PubMed ID: 24809290 [TBL] [Abstract][Full Text] [Related]
8. Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli. Saito N; Robert M; Kochi H; Matsuo G; Kakazu Y; Soga T; Tomita M J Biol Chem; 2009 Jun; 284(24):16442-16451. PubMed ID: 19372223 [TBL] [Abstract][Full Text] [Related]
9. Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142. Xie C; Li ZM; Bai F; Hu Z; Zhang W; Li Z PLoS One; 2020; 15(9):e0239372. PubMed ID: 32966327 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the mechanism underlying the dual cofactor specificity of glyoxylate reductase from Acetobacter aceti in the β-hydroxyacid dehydrogenase family. Majumder TR; Yoshizawa T; Inoue M; Aono R; Matsumura H; Mihara H Biochim Biophys Acta Proteins Proteom; 2024 Oct; 1873(1):141051. PubMed ID: 39368682 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus. Esser D; Kouril T; Talfournier F; Polkowska J; Schrader T; Bräsen C; Siebers B Extremophiles; 2013 Mar; 17(2):205-16. PubMed ID: 23296511 [TBL] [Abstract][Full Text] [Related]
12. Role of plant glyoxylate reductases during stress: a hypothesis. Allan WL; Clark SM; Hoover GJ; Shelp BJ Biochem J; 2009 Sep; 423(1):15-22. PubMed ID: 19740079 [TBL] [Abstract][Full Text] [Related]
13. Identification of pig brain aldehyde reductases with the high-Km aldehyde reductase, the low-Km aldehyde reductase and aldose reductase, carbonyl reductase, and succinic semialdehyde reductase. Cromlish JA; Flynn TG J Neurochem; 1985 May; 44(5):1485-93. PubMed ID: 3886845 [TBL] [Abstract][Full Text] [Related]
15. Kinetic characterization and structural modeling of an NADP Wang X; Lai C; Lei G; Wang F; Long H; Wu X; Chen J; Huo G; Li Z Int J Biol Macromol; 2018 Mar; 108():615-624. PubMed ID: 29242124 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. Yuan Z; Yin B; Wei D; Yuan YR J Struct Biol; 2013 May; 182(2):125-35. PubMed ID: 23500184 [TBL] [Abstract][Full Text] [Related]
17. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP Kopečná M; Vigouroux A; Vilím J; Končitíková R; Briozzo P; Hájková E; Jašková L; von Schwartzenberg K; Šebela M; Moréra S; Kopečný D Plant J; 2017 Oct; 92(2):229-243. PubMed ID: 28749584 [TBL] [Abstract][Full Text] [Related]
18. On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from Mycobacterium tuberculosis. de Carvalho LP; Ling Y; Shen C; Warren JD; Rhee KY Arch Biochem Biophys; 2011 May; 509(1):90-9. PubMed ID: 21303655 [TBL] [Abstract][Full Text] [Related]
19. Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase. Vangnai AS; Toyama H; De-Eknamkul W; Yoshihara N; Adachi O; Matsushita K FEMS Microbiol Lett; 2004 Dec; 241(2):157-62. PubMed ID: 15598527 [TBL] [Abstract][Full Text] [Related]