These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38871983)

  • 1. Resonant-mode engineering for additive reflective structural colors with high brightness and high color purity.
    Kwak H; Jung I; Kim D; Ju S; Choi S; Kang C; Kim H; Baac HW; Ok JG; Lee KT
    Sci Rep; 2024 Jun; 14(1):13694. PubMed ID: 38871983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of resonance orders and absorbing materials for structural colors in transmission with improved color purity.
    Kim D; Kim H; Jung I; Kim TY; Kwak H; Jung JH; Hwangbo CK; Park HJ; Lee KT
    Opt Express; 2022 Mar; 30(7):11740-11753. PubMed ID: 35473111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-purity reflective color filters based on thin film cavities embedded with an ultrathin Ge
    Lee J; Kim J; Lee M
    Nanoscale Adv; 2020 Oct; 2(10):4930-4937. PubMed ID: 36132919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Fabrication of Integrated Fabry-Perot Type Color Reflector for Reflective Displays.
    Cho SM; Cheon SH; Kim TY; Ah CS; Song J; Ryu H; Chu HY
    J Nanosci Nanotechnol; 2016 May; 16(5):5038-43. PubMed ID: 27483867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible High-Color-Purity Structural Color Filters Based on a Higher-Order Optical Resonance Suppression.
    Lee KT; Han SY; Li Z; Baac HW; Park HJ
    Sci Rep; 2019 Oct; 9(1):14917. PubMed ID: 31624284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-purity and wide-angle reflective structural colors based on an all-dielectric Fabry-Pérot cavity structure.
    Yang Z; Li W; Duan H
    Opt Lett; 2024 Feb; 49(3):594-597. PubMed ID: 38300067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge
    Liu F; Shi H; Zhu X; Dai P; Lin Z; Long Y; Xie Z; Zhou Y; Duan H
    Appl Opt; 2018 Oct; 57(30):9040-9045. PubMed ID: 30461892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high speed electrically switching reflective structural color display with large color gamut.
    Wang W; Guan Z; Xu H
    Nanoscale; 2021 Jan; 13(2):1164-1171. PubMed ID: 33403380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-Processable Nanocrystal-Based Broadband Fabry-Perot Absorber for Reflective Vivid Color Generation.
    Kim SJ; Choi HK; Lee H; Hong SH
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7280-7287. PubMed ID: 30746932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances.
    Ji C; Lee KT; Guo LJ
    Opt Lett; 2019 Jan; 44(1):86-89. PubMed ID: 30645565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Polarization-Independent and Wide-Angle Broadband Absorbers for Highly Efficient Reflective Structural Color Filters.
    Lee KT; Kang D; Park HJ; Park DH; Han S
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30935003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of additive colors with near unity amplitude using a multilayer tandem Fabry-Perot cavity.
    Kosger AC; Ghobadi A; Rashed AR; Caglayan H; Ozbay E
    Opt Lett; 2021 Jul; 46(14):3464-3467. PubMed ID: 34264239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic planar Fabry-Perot nanocavities with tunable interference colors based on filling density effects.
    Yang Z; Wang Y; Zhu X; Chen Y; Zhang S; Li P; Duan H
    Appl Opt; 2021 Jan; 60(3):551-557. PubMed ID: 33690428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Colors Enabled by Lattice Resonance on Silicon Nitride Metasurfaces.
    Yang JH; Babicheva VE; Yu MW; Lu TC; Lin TR; Chen KP
    ACS Nano; 2020 May; 14(5):5678-5685. PubMed ID: 32298575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trans-Reflective Color Filters Based on a Phase Compensated Etalon Enabling Adjustable Color Saturation.
    Park CS; Shrestha VR; Lee SS; Choi DY
    Sci Rep; 2016 May; 6():25496. PubMed ID: 27150979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Structural Color Images by UV-Patterned Conducting Polymer Nanofilms on Metal Surfaces.
    Chen S; Rossi S; Shanker R; Cincotti G; Gamage S; Kühne P; Stanishev V; Engquist I; Berggren M; Edberg J; Darakchieva V; Jonsson MP
    Adv Mater; 2021 Aug; 33(33):e2102451. PubMed ID: 34219300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-processable multi-color printing using UV nanoimprint lithography.
    Baek S; Kim K; Sung Y; Jung P; Ju S; Kim W; Kim SJ; Hong SH; Lee H
    Nanotechnology; 2020 Mar; 31(12):125301. PubMed ID: 31783377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-color reflective filter in a large area exploiting a sandwiched metasurface.
    Ye Y; Gu Y; Wang F; Cai Y; Chen L; Xu Y
    Opt Express; 2022 Jun; 30(13):23725-23733. PubMed ID: 36225047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient band-pass color filters enabled by resonant modes and plasmons near the Rayleigh anomaly.
    Mazulquim DB; Lee KJ; Yoon JW; Muniz LV; Borges BH; Neto LG; Magnusson R
    Opt Express; 2014 Dec; 22(25):30843-51. PubMed ID: 25607033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-dielectric high saturation structural colors enhanced by multipolar modulated metasurfaces.
    Li H; Xu Y; Zhang X; Xiao X; Zhou F; Zhang Z
    Opt Express; 2022 Aug; 30(16):28954-28965. PubMed ID: 36299081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.