BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38872036)

  • 41. Release characteristics of heavy metals from electrolytic manganese residue under varying environmental factors.
    Fosua BA; Xie H; Xiao X; Anaman R; Wang X; Guo Z; Peng C
    Environ Monit Assess; 2023 Mar; 195(4):498. PubMed ID: 36947342
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-sintering MSWI fly ash with electrolytic manganese residue and coal fly ash for lightweight ceramisite.
    Zhan X; Wang L; Wang L; Gong J; Wang X; Song X; Xu T
    Chemosphere; 2021 Jan; 263():127914. PubMed ID: 32822940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep insight into green remediation and hazard-free disposal of electrolytic manganese residue-based cementitious material.
    Wang F; Long G; Zhou JL
    Sci Total Environ; 2023 Oct; 894():165049. PubMed ID: 37355110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing sustainable valorization: Harmless synergistic melting treatment for high-value vitreous products from MSWI fly ash and electrolytic manganese residue.
    Chen X; Tan Y; Yan H; Shi J; Ding B; Wu J
    Waste Manag; 2023 Aug; 171():43-53. PubMed ID: 37647725
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characteristic pollutants risk assessment of modified manganese residue utilization in sintered product.
    Wang CQ; Liu K; Huang DM; Huang QC; Wang PX; Mei XD; Li SC
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88369-88382. PubMed ID: 36334196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics.
    Zhan X; Wang L; Gong J; Deng R; Wu M
    Chemosphere; 2022 Nov; 307(Pt 2):135793. PubMed ID: 35872056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic preparation and application in PCU of α-calcium sulfate hemihydrate whiskers from phosphogypsum and electrolytic manganese residue.
    Wang T; Ke X; Li J; Wang Y; Guan W; Sha X; Yang C; Zhang TC
    Sci Rep; 2024 Mar; 14(1):6260. PubMed ID: 38491074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient remediation of Mn
    Deng S; An Q; Ran B; Yang Z; Xu B; Zhao B; Li Z
    Water Res; 2022 Sep; 223():118962. PubMed ID: 35970107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of manganese phosphate and manganese carbonate during long-term sorption of Mn(2+) by viable Shewanella putrefaciens: effects of contact time and temperature.
    Chubar N; Avramut C; Visser T
    Environ Sci Process Impacts; 2015 Apr; 17(4):780-90. PubMed ID: 25707532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study on the Performance and Mechanism of Cement Solidified Desulfurization Manganese Residue.
    Wang S; Wang F; Che J; Ma L
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297318
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic and thermodynamic analysis on preparation of belite-calcium sulphoaluminate cement using electrolytic manganese residue and barium slag by TGA.
    He W; Li R; Yang Y; Zhang Y; Nie D
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95901-95916. PubMed ID: 37558917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leaching of manganese from electrolytic manganese residue by electro-reduction.
    Shu J; Liu R; Liu Z; Chen H; Tao C
    Environ Technol; 2017 Aug; 38(16):2077-2084. PubMed ID: 27766915
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes.
    Lan J; Sun Y; Huang P; Du Y; Zhan W; Zhang TC; Du D
    Chemosphere; 2020 Aug; 252():126487. PubMed ID: 32220714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sustainable utilization of water treatment residue as a porous geopolymer for iron and manganese removals from groundwater.
    Pachana PK; Rattanasak U; Nuithitikul K; Jitsangiam P; Chindaprasirt P
    J Environ Manage; 2022 Jan; 302(Pt A):114036. PubMed ID: 34735831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes.
    Li M; He Z; Zhong H; Hu L; Sun W
    Water Res; 2021 Jul; 200():117266. PubMed ID: 34058487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system.
    Zhan X; Wang L; Hu C; Gong J; Xu T; Li J; Yang L; Bai J; Zhong S
    Waste Manag; 2018 Dec; 82():62-70. PubMed ID: 30509596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: Mechanical properties and Mn
    Zhang Y; Liu X; Xu Y; Tang B; Wang Y
    J Hazard Mater; 2020 May; 390():122188. PubMed ID: 32006843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of soluble salts in electrolytic manganese residue on its geotechnical characteristics.
    Lu T; Wei Z; Li S; Wang Y; Wang W; Yang Y; Zheng B
    J Environ Manage; 2023 Aug; 340():117999. PubMed ID: 37119633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment.
    Zhan X; Wang L; Wang L; Wang X; Gong J; Yang L; Bai J
    Waste Manag; 2019 Oct; 98():135-143. PubMed ID: 31446253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Environmentally-friendly biorecovery of manganese from electrolytic manganese residue using a novel Penicillium oxalicum strain Z6-5-1: Kinetics and mechanism.
    Zhao S; Zheng BW; Wang YC; He F; Wang LJ; Lin X; Luo XM; Feng JX
    J Hazard Mater; 2023 Mar; 446():130662. PubMed ID: 36587595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.