BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38872102)

  • 21. Both the polypyrimidine tract and the 3' splice site function prior to the first step of splicing in fission yeast.
    Romfo CM; Wise JA
    Nucleic Acids Res; 1997 Nov; 25(22):4658-65. PubMed ID: 9358179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III.
    Christopher DA; Hallick RB
    Nucleic Acids Res; 1989 Oct; 17(19):7591-608. PubMed ID: 2477800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon.
    Doetsch NA; Favreau MR; Kuscuoglu N; Thompson MD; Hallick RB
    Curr Genet; 2001 Feb; 39(1):49-60. PubMed ID: 11318107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organization of ribosomal protein genes rpl23, rpl2, rps19, rpl22 and rps3 on the Euglena gracilis chloroplast genome.
    Christopher DA; Cushman JC; Price CA; Hallick RB
    Curr Genet; 1988 Sep; 14(3):275-85. PubMed ID: 3143485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya.
    Russell AG; Watanabe Y; Charette JM; Gray MW
    Nucleic Acids Res; 2005; 33(9):2781-91. PubMed ID: 15894796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A complex twintron is excised as four individual introns.
    Drager RG; Hallick RB
    Nucleic Acids Res; 1993 May; 21(10):2389-94. PubMed ID: 7685079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An intronic polypyrimidine-rich element downstream of the donor site modulates cystic fibrosis transmembrane conductance regulator exon 9 alternative splicing.
    Zuccato E; Buratti E; Stuani C; Baralle FE; Pagani F
    J Biol Chem; 2004 Apr; 279(17):16980-8. PubMed ID: 14966131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA splicing in lower eukaryotes.
    Woolford JL; Peebles CL
    Curr Opin Genet Dev; 1992 Oct; 2(5):712-9. PubMed ID: 1333856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions.
    Yoshida Y; Tomiyama T; Maruta T; Tomita M; Ishikawa T; Arakawa K
    BMC Genomics; 2016 Mar; 17():182. PubMed ID: 26939900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Uniquely Complex Mitochondrial Proteome from Euglena gracilis.
    Hammond MJ; Nenarokova A; Butenko A; Zoltner M; Dobáková EL; Field MC; Lukeš J
    Mol Biol Evol; 2020 Aug; 37(8):2173-2191. PubMed ID: 32159766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.
    Copertino DW; Christopher DA; Hallick RB
    Nucleic Acids Res; 1991 Dec; 19(23):6491-7. PubMed ID: 1721702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence variations affect the 5' splice site selection of plant introns.
    Cheng W; Hong C; Zeng F; Liu N; Gao H
    Plant Physiol; 2023 Sep; 193(2):1281-1296. PubMed ID: 37394939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of various RNA-seq approaches for identification of gene outrons in the flatworm Opisthorchis felineus.
    Ershov NI; Maslov DE; Bondar NP
    Vavilovskii Zhurnal Genet Selektsii; 2020 Dec; 24(8):897-904. PubMed ID: 35088003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A group III intron is formed from domains of two individual group II introns.
    Hong L; Hallick RB
    Genes Dev; 1994 Jul; 8(13):1589-99. PubMed ID: 7958842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustered organization, polycistronic transcription, and evolution of modification-guide snoRNA genes in Euglena gracilis.
    Moore AN; Russell AG
    Mol Genet Genomics; 2012 Jan; 287(1):55-66. PubMed ID: 22134850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns.
    Zhang L; Jenkins KP; Stutz E; Hallick RB
    RNA; 1995 Dec; 1(10):1079-88. PubMed ID: 8595563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.
    Milanowski R; Karnkowska A; Ishikawa T; Zakryś B
    Mol Biol Evol; 2014 Mar; 31(3):584-93. PubMed ID: 24296662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications.
    Tessier LH; van der Speck H; Gualberto JM; Grienenberger JM
    Curr Genet; 1997 Mar; 31(3):208-13. PubMed ID: 9065383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes.
    Pucker B; Brockington SF
    BMC Genomics; 2018 Dec; 19(1):980. PubMed ID: 30594132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.