These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38872400)

  • 1. Ten things to remember about propensity scores.
    Groenwold RHH; Dekkers OM; le Cessie S
    Eur J Endocrinol; 2024 Jul; 191(1):E1-E4. PubMed ID: 38872400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covariance adjustment on propensity parameters for continuous treatment in linear models.
    Yang W; Joffe MM; Hennessy S; Feldman HI
    Stat Med; 2014 Nov; 33(26):4577-89. PubMed ID: 25042626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling for confounding via propensity score methods can result in biased estimation of the conditional AUC: A simulation study.
    Galadima HI; McClish DK
    Pharm Stat; 2019 Oct; 18(5):568-582. PubMed ID: 31111682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for Confounding in Observational Studies.
    D'Onofrio BM; Sjölander A; Lahey BB; Lichtenstein P; Öberg AS
    Annu Rev Clin Psychol; 2020 May; 16():25-48. PubMed ID: 32384000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments.
    Austin PC
    Stat Med; 2014 Mar; 33(7):1242-58. PubMed ID: 24122911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propensity score methods for time-dependent cluster confounding.
    Cafri G; Austin PC
    Biom J; 2020 Oct; 62(6):1443-1462. PubMed ID: 32419247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of different methods to handle missing data in the context of propensity score analysis.
    Choi J; Dekkers OM; le Cessie S
    Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders].
    Huang LL; Wei YY; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting and correcting the bias of unmeasured factors using perturbation analysis: a data-mining approach.
    Lee WC
    BMC Med Res Methodol; 2014 Feb; 14():18. PubMed ID: 24499374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias.
    Pressler TR; Kaizar EE
    Stat Med; 2013 Sep; 32(20):3552-68. PubMed ID: 23553373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching.
    Papadogeorgou G; Choirat C; Zigler CM
    Biostatistics; 2019 Apr; 20(2):256-272. PubMed ID: 29365040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different approaches for confounding in nonrandomised observational data: a case-study of antipsychotics treatment.
    Sarlon E; Millier A; Aballéa S; Toumi M
    Community Ment Health J; 2014 Aug; 50(6):711-20. PubMed ID: 24696151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observational Research Using Propensity Scores.
    Raghunathan K; Layton JB; Ohnuma T; Shaw AD
    Adv Chronic Kidney Dis; 2016 Nov; 23(6):367-372. PubMed ID: 28115080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
    Schmidt AF; Klungel OH; Groenwold RH;
    Epidemiology; 2016 Jan; 27(1):133-42. PubMed ID: 26436519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five Steps to Successfully Implement and Evaluate Propensity Score Matching in Clinical Research Studies.
    Staffa SJ; Zurakowski D
    Anesth Analg; 2018 Oct; 127(4):1066-1073. PubMed ID: 29324498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.
    Austin PC
    Stat Methods Med Res; 2017 Feb; 26(1):201-222. PubMed ID: 25038071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the c-statistic in variable selection for propensity score models.
    Westreich D; Cole SR; Funk MJ; Brookhart MA; Stürmer T
    Pharmacoepidemiol Drug Saf; 2011 Mar; 20(3):317-20. PubMed ID: 21351315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
    Austin PC; Grootendorst P; Anderson GM
    Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners.
    Desai RJ; Franklin JM
    BMJ; 2019 Oct; 367():l5657. PubMed ID: 31645336
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.