These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38872421)

  • 1. Advancing Lignocellulosic Biomass Fractionation through Molten Salt Hydrates: Catalyst-Enhanced Pretreatment for Sustainable Biorefineries.
    Paiva MF; Sadula S; Vlachos D; Wojcieszak R; Vanhove G; Noronha FB
    ChemSusChem; 2024 Jun; ():e202400396. PubMed ID: 38872421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High-Value Commodity Fuels and Chemicals.
    Gale M; Cai CM; Gilliard-Abdul-Aziz KL
    ChemSusChem; 2020 Apr; 13(8):1947-1966. PubMed ID: 31899593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organosolv pretreatment for biorefineries: Current status, perspectives, and challenges.
    Rabelo SC; Nakasu PYS; Scopel E; Araújo MF; Cardoso LH; Costa ACD
    Bioresour Technol; 2023 Feb; 369():128331. PubMed ID: 36403910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production.
    Garedew M; Lin F; Song B; DeWinter TM; Jackson JE; Saffron CM; Lam CH; Anastas PT
    ChemSusChem; 2020 Sep; 13(17):4214-4237. PubMed ID: 32460408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Oxidative Valorization of Lignin to High-Value Chemicals: A Critical Review of Opportunities and Challenges.
    Abdelaziz OY; Clemmensen I; Meier S; Costa CAE; Rodrigues AE; Hulteberg CP; Riisager A
    ChemSusChem; 2022 Oct; 15(20):e202201232. PubMed ID: 36004569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Advances in lignin valorization from a biorefinery concept].
    Zhang S; Chen Y; Liu Z; Zhao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3108-3128. PubMed ID: 34622621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic biomass pretreatment with a lignin stabilization strategy and valorization toward multipurpose fractionation.
    Fan Y; Ji H; Ji X; Tian Z; Chen J
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129186. PubMed ID: 38184047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Value Chemicals from Electrocatalytic Depolymerization of Lignin: Challenges and Opportunities.
    Ayub R; Raheel A
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review.
    Sharma V; Tsai ML; Nargotra P; Chen CW; Sun PP; Singhania RR; Patel AK; Dong CD
    Sci Total Environ; 2023 Feb; 861():160560. PubMed ID: 36574559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total utilization of lignin and carbohydrates in
    Chen X; Zhang K; Xiao LP; Sun RC; Song G
    Biotechnol Biofuels; 2020; 13():2. PubMed ID: 31921351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.
    Jiang Y; Zeng X; Luque R; Tang X; Sun Y; Lei T; Liu S; Lin L
    ChemSusChem; 2017 Oct; 10(20):3982-3993. PubMed ID: 28691765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals.
    Den W; Sharma VK; Lee M; Nadadur G; Varma RS
    Front Chem; 2018; 6():141. PubMed ID: 29755972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views.
    Chen Z; Chen L; Khoo KS; Gupta VK; Sharma M; Show PL; Yap PS
    Biotechnol Adv; 2023 Dec; 69():108265. PubMed ID: 37783293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
    Sivagurunathan P; Raj T; Mohanta CS; Semwal S; Satlewal A; Gupta RP; Puri SK; Ramakumar SSV; Kumar R
    Chemosphere; 2021 Apr; 268():129326. PubMed ID: 33360003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept.
    Song K; Chu Q; Hu J; Bu Q; Li F; Chen X; Shi A
    Bioresour Technol; 2019 Mar; 276():161-169. PubMed ID: 30623871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design.
    Poveda-Giraldo JA; Garcia-Vallejo MC; Cardona Alzate CA
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization.
    Kärkäs MD
    ChemSusChem; 2017 May; 10(10):2111-2115. PubMed ID: 28394095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignocellulosic Biomass Fractionation by Mineral Acids and Resulting Extract Purification Processes: Conditions, Yields, and Purities.
    Oriez V; Peydecastaing J; Pontalier PY
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31771199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review.
    Sun D; Lv ZW; Rao J; Tian R; Sun SN; Peng F
    Carbohydr Polym; 2022 Apr; 281():119050. PubMed ID: 35074121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.