These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Najma B; Wei WS; Baskaran A; Foster PJ; Duclos G Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2300174121. PubMed ID: 38175870 [TBL] [Abstract][Full Text] [Related]
3. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Drechsler H; McAinsh AD Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1635-44. PubMed ID: 26969727 [TBL] [Abstract][Full Text] [Related]
4. The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. Bodrug T; Wilson-Kubalek EM; Nithianantham S; Thompson AF; Alfieri A; Gaska I; Major J; Debs G; Inagaki S; Gutierrez P; Gheber L; McKenney RJ; Sindelar CV; Milligan R; Stumpff J; Rosenfeld SS; Forth ST; Al-Bassam J Elife; 2020 Jan; 9():. PubMed ID: 31958056 [TBL] [Abstract][Full Text] [Related]
5. Pressure-induced changes in the structure and function of the kinesin-microtubule complex. Nishiyama M; Kimura Y; Nishiyama Y; Terazima M Biophys J; 2009 Feb; 96(3):1142-50. PubMed ID: 19186149 [TBL] [Abstract][Full Text] [Related]
6. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow. Suzuki K; Miyazaki M; Takagi J; Itabashi T; Ishiwata S Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2922-2927. PubMed ID: 28265076 [TBL] [Abstract][Full Text] [Related]
7. Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies. Banks RA; Galstyan V; Lee HJ; Hirokawa S; Ierokomos A; Ross TD; Bryant Z; Thomson M; Phillips R Elife; 2023 Feb; 12():. PubMed ID: 36752605 [TBL] [Abstract][Full Text] [Related]
8. Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors. Roostalu J; Rickman J; Thomas C; Nédélec F; Surrey T Cell; 2018 Oct; 175(3):796-808.e14. PubMed ID: 30340043 [TBL] [Abstract][Full Text] [Related]
9. A model of microtubule depolymerization by kinesin-8 motor proteins. Xie P Adv Protein Chem Struct Biol; 2024; 141():87-122. PubMed ID: 38960488 [TBL] [Abstract][Full Text] [Related]
10. Cross-linker design determines microtubule network organization by opposing motors. Henkin G; Chew WX; Nédélec F; Surrey T Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2206398119. PubMed ID: 35960844 [TBL] [Abstract][Full Text] [Related]
12. The Kinesin-8 Kip3 switches protofilaments in a sideward random walk asymmetrically biased by force. Bugiel M; Böhl E; Schäffer E Biophys J; 2015 Apr; 108(8):2019-27. PubMed ID: 25902441 [TBL] [Abstract][Full Text] [Related]
13. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 -tubulin complex. Taguchi S; Nakano J; Imasaki T; Kita T; Saijo-Hamano Y; Sakai N; Shigematsu H; Okuma H; Shimizu T; Nitta E; Kikkawa S; Mizobuchi S; Niwa S; Nitta R Elife; 2022 Sep; 11():. PubMed ID: 36065637 [TBL] [Abstract][Full Text] [Related]
14. Theory of antiparallel microtubule overlap stabilization by motors and diffusible crosslinkers. Lera-Ramirez M; Nédélec FJ Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):600-610. PubMed ID: 31658404 [TBL] [Abstract][Full Text] [Related]
15. Insight into the molecular mechanism of the multitasking kinesin-8 motor. Peters C; Brejc K; Belmont L; Bodey AJ; Lee Y; Yu M; Guo J; Sakowicz R; Hartman J; Moores CA EMBO J; 2010 Oct; 29(20):3437-47. PubMed ID: 20818331 [TBL] [Abstract][Full Text] [Related]
16. Kinesin-14 motors drive a right-handed helical motion of antiparallel microtubules around each other. Mitra A; Meißner L; Gandhimathi R; Renger R; Ruhnow F; Diez S Nat Commun; 2020 May; 11(1):2565. PubMed ID: 32444784 [TBL] [Abstract][Full Text] [Related]
17. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Hirose K; Akimaru E; Akiba T; Endow SA; Amos LA Mol Cell; 2006 Sep; 23(6):913-23. PubMed ID: 16973442 [TBL] [Abstract][Full Text] [Related]
18. Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Memarian FL; Lopes JD; Schwarzendahl FJ; Athani MG; Sarpangala N; Gopinathan A; Beller DA; Dasbiswas K; Hirst LS Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34934005 [TBL] [Abstract][Full Text] [Related]
19. Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy. Peña A; Sweeney A; Cook AD; Locke J; Topf M; Moores CA Structure; 2020 Apr; 28(4):450-457.e5. PubMed ID: 32084356 [TBL] [Abstract][Full Text] [Related]
20. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors. Downing KH; Nogales E Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]