These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38872486)

  • 41. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production.
    Peng W; Liu J; Liu X; Wang L; Yin L; Tan H; Hou F; Liang J
    Nat Commun; 2023 Jul; 14(1):4430. PubMed ID: 37481579
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis.
    Li F; Du M; Xiao X; Xu Q
    ACS Nano; 2022 Dec; 16(12):19913-19939. PubMed ID: 36399093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts.
    Ren M; Lei J; Zhang J; Yakobson BI; Tour JM
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42715-42723. PubMed ID: 34473475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing Oxygen-to-Hydrogen Peroxide Electro-Conversion at Electrocatalysts Derived from Polyaniline.
    Holade Y; Knani S; Lacour MA; Cambedouzou J; Tingry S; Napporn TW; Cornu D
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient electrochemical detection of H
    Balasubramaniyan NG; Perumal P
    Anal Methods; 2024 Jan; 16(4):624-638. PubMed ID: 38198128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-organic framework-derived two-dimensional in-plane Janus catalysts promoting oxygen electroreduction to hydrogen peroxide.
    Jiang L; Sun Y; Duan J; Chen S
    Chemistry; 2024 Feb; 30(11):e202303665. PubMed ID: 38016935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Pot Synthesis of Heterobimetallic Metal-Organic Frameworks (MOFs) for Multifunctional Catalysis.
    Iqbal B; Saleem M; Arshad SN; Rashid J; Hussain N; Zaheer M
    Chemistry; 2019 Aug; 25(44):10490-10498. PubMed ID: 31163099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate oxidation enhances the electrochemical production of hydrogen peroxide.
    Lim J; Hoffmann MR
    Chem Eng J; 2019 Oct; 374():958-964. PubMed ID: 31624468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance.
    Guo Y; Tong X; Yang N
    Nanomicro Lett; 2023 Mar; 15(1):77. PubMed ID: 36976372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced the Efficiency of Electrocatalytic CO
    Yang J; Yu J; Dong W; Yang D; Hua Z; Wan X; Wang M; Li H; Lu S
    Small; 2023 Aug; 19(35):e2301319. PubMed ID: 37178410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential.
    Zheng F; Zhang Z; Xiang D; Li P; Du C; Zhuang Z; Li X; Chen W
    J Colloid Interface Sci; 2019 Nov; 555():541-547. PubMed ID: 31404838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective Oxidation Using In Situ-Generated Hydrogen Peroxide.
    Lewis RJ; Hutchings GJ
    Acc Chem Res; 2024 Jan; 57(1):106-119. PubMed ID: 38116936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide.
    Warczak M; Gryszel M; Jakešová M; Đerek V; Głowacki ED
    Chem Commun (Camb); 2018 Feb; 54(16):1960-1963. PubMed ID: 29323369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide.
    Ngamaroonchote A; Sanguansap Y; Wutikhun T; Karn-Orachai K
    Mikrochim Acta; 2020 Sep; 187(10):559. PubMed ID: 32915302
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts.
    Yuan Q; Zhao J; Mok DH; Zheng Z; Ye Y; Liang C; Zhou L; Back S; Jiang K
    Nano Lett; 2022 Feb; 22(3):1257-1264. PubMed ID: 34965148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering iridium-based metal organic frameworks towards electrocatalytic water oxidation.
    Zhao Y; Zhang S; Wang M; Han J; Wang H; Li Z; Liu X
    Dalton Trans; 2018 Mar; 47(13):4646-4652. PubMed ID: 29527609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel cobalt-based metal-organic frameworks with superior catalytic performance on N-(4-aminobutyl)-N-ethylisoluminol chemiluminescent reaction.
    Zhang L; Ouyang H; Zhang D; Fu Z
    Anal Chim Acta; 2021 Mar; 1148():238174. PubMed ID: 33516386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatially confined electrochemical conversion of metal-organic frameworks into metal-sulfides and their
    Liberman I; He W; Shimoni R; Ifraemov R; Hod I
    Chem Sci; 2020 Jan; 11(1):180-185. PubMed ID: 32110369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorination of Covalent Organic Framework Reinforcing the Confinement of Pd Nanoclusters Enhances Hydrogen Peroxide Photosynthesis.
    Liu Y; Li L; Tan H; Ye N; Gu Y; Zhao S; Zhang S; Luo M; Guo S
    J Am Chem Soc; 2023 Sep; 145(36):19877-19884. PubMed ID: 37584527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Novel CuxO Nanoparticles@ZIF-8 Composite Derived from Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide.
    Yang J; Ye H; Zhao F; Zeng B
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20407-14. PubMed ID: 27434730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.