These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38872543)
1. An SIS epidemic model with individual variation. Pollett PK Math Biosci Eng; 2024 Mar; 21(4):5446-5455. PubMed ID: 38872543 [TBL] [Abstract][Full Text] [Related]
2. Extinction times in the subcritical stochastic SIS logistic epidemic. Brightwell G; House T; Luczak M J Math Biol; 2018 Aug; 77(2):455-493. PubMed ID: 29387919 [TBL] [Abstract][Full Text] [Related]
3. Precise Estimates of Persistence Time for SIS Infections in Heterogeneous Populations. Clancy D Bull Math Biol; 2018 Nov; 80(11):2871-2896. PubMed ID: 30206808 [TBL] [Abstract][Full Text] [Related]
4. SIS Epidemic Propagation on Hypergraphs. Bodó Á; Katona GY; Simon PL Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348 [TBL] [Abstract][Full Text] [Related]
5. A stochastic SIR network epidemic model with preventive dropping of edges. Ball F; Britton T; Leung KY; Sirl D J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213 [TBL] [Abstract][Full Text] [Related]
6. Modelling the impact of precaution on disease dynamics and its evolution. Cheng T; Zou X J Math Biol; 2024 May; 89(1):1. PubMed ID: 38709376 [TBL] [Abstract][Full Text] [Related]
7. Statistical inference for unknown parameters of stochastic SIS epidemics on complete graphs. Bu H; Xue X Chaos; 2020 Nov; 30(11):113110. PubMed ID: 33261326 [TBL] [Abstract][Full Text] [Related]
8. An application of queuing theory to SIS and SEIS epidemic models. Hernandez-Suarez CM; Castillo-Chavez C; Lopez OM; Hernandez-Cuevas K Math Biosci Eng; 2010 Oct; 7(4):809-23. PubMed ID: 21077709 [TBL] [Abstract][Full Text] [Related]
9. Asymptotic profiles of the steady states for an SIS epidemic patch model with asymmetric connectivity matrix. Chen S; Shi J; Shuai Z; Wu Y J Math Biol; 2020 Jun; 80(7):2327-2361. PubMed ID: 32377791 [TBL] [Abstract][Full Text] [Related]
10. Effects of stochastic perturbation on the SIS epidemic system. Lahrouz A; Settati A; Akharif A J Math Biol; 2017 Jan; 74(1-2):469-498. PubMed ID: 27289475 [TBL] [Abstract][Full Text] [Related]
11. Multi-patch and multi-group epidemic models: a new framework. Bichara D; Iggidr A J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377 [TBL] [Abstract][Full Text] [Related]
12. Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment. Zhang BX; Cai YL; Wang BX; Wang WM Math Biosci Eng; 2019 Nov; 17(1):893-909. PubMed ID: 31731383 [TBL] [Abstract][Full Text] [Related]
13. Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models. Li H; Peng R J Math Biol; 2019 Sep; 79(4):1279-1317. PubMed ID: 31256205 [TBL] [Abstract][Full Text] [Related]
14. Estimating the within-household infection rate in emerging SIR epidemics among a community of households. Ball F; Shaw L J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343 [TBL] [Abstract][Full Text] [Related]
15. A risk-induced dispersal strategy of the infected population for a disease-free state in the SIS epidemic model. Choi W; Ahn I J Biol Dyn; 2024 Dec; 18(1):2352359. PubMed ID: 38717930 [TBL] [Abstract][Full Text] [Related]
16. On the stochastic SIS epidemic model in a periodic environment. Bacaër N J Math Biol; 2015 Aug; 71(2):491-511. PubMed ID: 25205518 [TBL] [Abstract][Full Text] [Related]
17. Variability in a Community-Structured SIS Epidemiological Model. Hiebeler DE; Rier RM; Audibert J; LeClair PJ; Webber A Bull Math Biol; 2015 Apr; 77(4):698-712. PubMed ID: 25185749 [TBL] [Abstract][Full Text] [Related]
18. Effective degree network disease models. Lindquist J; Ma J; van den Driessche P; Willeboordse FH J Math Biol; 2011 Feb; 62(2):143-64. PubMed ID: 20179932 [TBL] [Abstract][Full Text] [Related]
19. A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Pu LQ; Lin ZG Math Biosci Eng; 2019 Apr; 16(4):3094-3110. PubMed ID: 31137252 [TBL] [Abstract][Full Text] [Related]
20. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate. Christen A; Maulén-Yañez MA; González-Olivares E; Curé M J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]