These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38873070)
21. Highly Efficient Aggregation-Induced Red-Emissive Organic Thermally Activated Delayed Fluorescence Materials with Prolonged Fluorescence Lifetime for Time-Resolved Luminescence Bioimaging. Qi S; Kim S; Nguyen VN; Kim Y; Niu G; Kim G; Kim SJ; Park S; Yoon J ACS Appl Mater Interfaces; 2020 Nov; 12(46):51293-51301. PubMed ID: 33156606 [TBL] [Abstract][Full Text] [Related]
22. Molecular design of efficient yellow- to red-emissive alkynylgold(iii) complexes for the realization of thermally activated delayed fluorescence (TADF) and their applications in solution-processed organic light-emitting devices. Au-Yeung CC; Li LK; Tang MC; Lai SL; Cheung WL; Ng M; Chan MY; Yam VW Chem Sci; 2021 Jul; 12(27):9516-9527. PubMed ID: 34349927 [TBL] [Abstract][Full Text] [Related]
23. Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Chen C; Huang R; Batsanov AS; Pander P; Hsu YT; Chi Z; Dias FB; Bryce MR Angew Chem Int Ed Engl; 2018 Dec; 57(50):16407-16411. PubMed ID: 30339314 [TBL] [Abstract][Full Text] [Related]
25. Anchoring Carbon Nanodots onto Nanosilica for Phosphorescence Enhancement and Delayed Fluorescence Nascence in Solid and Liquid States. He J; Chen Y; He Y; Xu X; Lei B; Zhang H; Zhuang J; Hu C; Liu Y Small; 2020 Dec; 16(49):e2005228. PubMed ID: 33185338 [TBL] [Abstract][Full Text] [Related]
26. Thermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White-Light Emission. Polgar AM; Tonge CM; Christopherson CJ; Paisley NR; Reyes AC; Hudson ZM ACS Appl Mater Interfaces; 2020 Aug; 12(34):38602-38613. PubMed ID: 32846499 [TBL] [Abstract][Full Text] [Related]
27. Charge Transfer as the Key Parameter Affecting the Color Purity of Thermally Activated Delayed Fluorescence Emitters. Ansari R; Shao W; Yoon SJ; Kim J; Kieffer J ACS Appl Mater Interfaces; 2021 Jun; 13(24):28529-28537. PubMed ID: 34106677 [TBL] [Abstract][Full Text] [Related]
28. Thermally Activated Delayed Fluorescence Mechanism of a Bicyclic "Carbene-Metal-Amide" Copper Compound: DFT/MRCI Studies and Roles of Excited-State Structure Relaxation. Song XF; Li ZW; Chen WK; Gao YJ; Cui G Inorg Chem; 2022 May; 61(20):7673-7681. PubMed ID: 35200011 [TBL] [Abstract][Full Text] [Related]
29. Molecular Engineering of Sulfur-Bridged Polycyclic Emitters Towards Tunable TADF and RTP Electroluminescence. Li M; Xie W; Cai X; Peng X; Liu K; Gu Q; Zhou J; Qiu W; Chen Z; Gan Y; Su SJ Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202209343. PubMed ID: 35816355 [TBL] [Abstract][Full Text] [Related]
30. Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect. Yao X; Li Y; Shi H; Yu Z; Wu B; Zhou Z; Zhou C; Zheng X; Tang M; Wang X; Ma H; Meng Z; Huang W; An Z Nat Commun; 2024 May; 15(1):4520. PubMed ID: 38806515 [TBL] [Abstract][Full Text] [Related]
31. A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Zhan L; Chen Z; Gong S; Xiang Y; Ni F; Zeng X; Xie G; Yang C Angew Chem Int Ed Engl; 2019 Dec; 58(49):17651-17655. PubMed ID: 31588647 [TBL] [Abstract][Full Text] [Related]
32. Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. Liu K; Li S; Fu L; Lei Y; Liao Q; Fu H Nanoscale; 2022 May; 14(17):6305-6311. PubMed ID: 35420117 [TBL] [Abstract][Full Text] [Related]
33. Bright near-infrared emission from the Au Liu Z; Luo L; Kong J; Kahng E; Zhou M; Jin R Nanoscale; 2024 Apr; 16(15):7419-7426. PubMed ID: 38529816 [TBL] [Abstract][Full Text] [Related]
34. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Ghosh M; Chatterjee J; Panwaria P; Kudlu A; Tothadi S; Khan S Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202410792. PubMed ID: 39148269 [TBL] [Abstract][Full Text] [Related]
35. Rational Molecular Design Strategy for High-Efficiency Ultrapure Blue TADF Emitters: Symmetrical and Rigid Sulfur-Bridged Boron-Based Acceptors. Gao H; Li Z; Pang Z; Qin Y; Liu G; Gao T; Dong X; Shen S; Xie X; Wang P; Lee CS; Wang Y ACS Appl Mater Interfaces; 2023 Feb; 15(4):5529-5537. PubMed ID: 36680517 [TBL] [Abstract][Full Text] [Related]
36. Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. Song J; Wang Y; Qu L; Fang L; Zhou X; Xu ZX; Yang C; Wu P; Xiang H J Phys Chem Lett; 2022 Jun; 13(25):5838-5844. PubMed ID: 35727022 [TBL] [Abstract][Full Text] [Related]
37. Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triarylboron Acceptor: MR TADF and D-A TADF. Gao H; Shen S; Qin Y; Liu G; Gao T; Dong X; Pang Z; Xie X; Wang P; Wang Y J Phys Chem Lett; 2022 Aug; 13(32):7561-7567. PubMed ID: 35948077 [TBL] [Abstract][Full Text] [Related]
38. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate. Liu J; Zhou K; Wang D; Deng C; Duan K; Ai Q; Zhang Q Front Chem; 2019; 7():312. PubMed ID: 31165054 [TBL] [Abstract][Full Text] [Related]
39. A high-contrast polymorphic difluoroboron luminogen with efficient RTP and TADF emissions. Wang X; Wu X; Wang T; Wu Y; Shu H; Cheng Z; Zhao L; Tian H; Tong H; Wang L Chem Commun (Camb); 2023 Jan; 59(10):1377-1380. PubMed ID: 36649148 [TBL] [Abstract][Full Text] [Related]
40. Superstructures of copper nanoclusters as NIR TADF emitters: solvent-dependent optical and morphological modulation. Agrawal S; Shil D; Gupta A; Mukherjee S Nanoscale; 2024 Nov; 16(44):20556-20569. PubMed ID: 39429123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]