These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38873618)

  • 1. Enhanced organic photovoltaic-based retinal prosthesis using a cathode-modified structure with plasmonic silver nanoparticles: a computational study.
    Rahmani A; Eom K
    Front Cell Neurosci; 2024; 18():1385567. PubMed ID: 38873618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of efficient organic solar cell-based retinal prosthesis using plasmonic gold nanoparticles.
    Rahmani A; Eom K
    Front Cell Neurosci; 2023; 17():1205048. PubMed ID: 37576567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon enhanced organic solar cell with different silver nanosphere sizes.
    Uddin A; Yang X
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5752-60. PubMed ID: 25935999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement.
    Stratakis E; Stylianakis MM; Koudoumas E; Kymakis E
    Nanoscale; 2013 May; 5(10):4144-50. PubMed ID: 23571764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells.
    Yao K; Zhong H; Liu Z; Xiong M; Leng S; Zhang J; Xu YX; Wang W; Zhou L; Huang H; Jen AK
    ACS Nano; 2019 May; 13(5):5397-5409. PubMed ID: 31017763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedding plasmonic gold nanoparticles in a ZnO layer enhanced the performance of inverted organic solar cells based on an indacenodithieno[3,2-
    Waketola AG; Pfukwa C; Neethling P; Bosman G; Genene Z; Wang E; Mammo W; Hone FG; Tegegne NA
    RSC Adv; 2023 May; 13(24):16175-16184. PubMed ID: 37260711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.
    Li S; Li Z; Zhang X; Zhang Z; Liu C; Shen L; Guo W; Ruan S
    Phys Chem Chem Phys; 2016 Sep; 18(35):24285-9. PubMed ID: 27531663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.
    Du P; Jing P; Li D; Cao Y; Liu Z; Sun Z
    Small; 2015 May; 11(20):2454-62. PubMed ID: 25641914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic.
    Chen MC; Yang YL; Chen SW; Li JH; Aklilu M; Tai Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):511-7. PubMed ID: 23286370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell.
    Singh A; Dey A; Das D; Iyer PK
    ACS Appl Mater Interfaces; 2016 May; 8(17):10904-10. PubMed ID: 27075007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells.
    Wu JL; Chen FC; Hsiao YS; Chien FC; Chen P; Kuo CH; Huang MH; Hsu CS
    ACS Nano; 2011 Feb; 5(2):959-67. PubMed ID: 21229960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications.
    Kim CH; Cha SH; Kim SC; Song M; Lee J; Shin WS; Moon SJ; Bahng JH; Kotov NA; Jin SH
    ACS Nano; 2011 Apr; 5(4):3319-25. PubMed ID: 21438626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT:PCBM polymer solar cells.
    Omrani M; Fallah H; Choy KL; Abdi-Jalebi M
    Sci Rep; 2021 Oct; 11(1):19774. PubMed ID: 34611202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the effects of shape, material and location of incorporation of metal nanoparticles on the performance of plasmonic organic solar cells.
    Mohan M; Sekar R; Namboothiry MAG
    RSC Adv; 2020 Jul; 10(44):26126-26132. PubMed ID: 35519780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Effects of Au@Ag Nanoparticles in Buffer and Active Layers of Polymer Solar Cells for Efficiency Enhancement.
    Alkhalayfeh MA; Aziz AA; Pakhuruddin MZ; Katubi KMM
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers.
    Yang Y; Feng S; Li M; Wu Z; Fang X; Wang F; Geng D; Yang T; Li X; Sun B; Gao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24430-7. PubMed ID: 26477556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.
    Liu K; Qu S; Zhang X; Tan F; Wang Z
    Nanoscale Res Lett; 2013 Feb; 8(1):88. PubMed ID: 23418988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.
    Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Gold-Silver Rough-Surface Nanoparticles on Plasmonic Light Scattering in Organic Solar Cells.
    Tran QN; Lee HK; Kim JH; Park SJ
    J Nanosci Nanotechnol; 2020 Jan; 20(1):304-311. PubMed ID: 31383171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-processed nanocrystalline TiO2 buffer layer used for improving the performance of organic photovoltaics.
    Salim T; Yin Z; Sun S; Huang X; Zhang H; Lam YM
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1063-7. PubMed ID: 21395281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.