These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38873747)

  • 1. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement.
    Recktenwald SM; Rashidi Y; Graham I; Arratia PE; Del Giudice F; Wagner C
    Soft Matter; 2024 Jun; 20(25):4950-4963. PubMed ID: 38873747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic Particle Train Formation in Microfluidic Flows Using a Xanthan Gum Aqueous Solution.
    Jeyasountharan A; Shahrivar K; D'Avino G; Del Giudice F
    Anal Chem; 2021 Apr; 93(13):5503-5512. PubMed ID: 33755431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics analysis of red blood cell membrane viscoelasticity.
    Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S
    Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of wall slip on the viscoelastic particle ordering in a microfluidic channel.
    D'Avino G; Maffettone PL
    Electrophoresis; 2022 Nov; 43(21-22):2206-2216. PubMed ID: 35689363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Crystal: Emergent Order of Red Blood Cells Under Wall-Confined Shear Flow.
    Shen Z; Fischer TM; Farutin A; Vlahovska PM; Harting J; Misbah C
    Phys Rev Lett; 2018 Jun; 120(26):268102. PubMed ID: 30004752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell stretching measurement utilizing viscoelastic particle focusing.
    Cha S; Shin T; Lee SS; Shim W; Lee G; Lee SJ; Kim Y; Kim JM
    Anal Chem; 2012 Dec; 84(23):10471-7. PubMed ID: 23163397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
    Reichel F; Mauer J; Nawaz AA; Gompper G; Guck J; Fedosov DA
    Biophys J; 2019 Jul; 117(1):14-24. PubMed ID: 31235179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions between two equally sized spheres in viscoelastic fluids in shear flow.
    Snijkers F; Pasquino R; Vermant J
    Langmuir; 2013 May; 29(19):5701-13. PubMed ID: 23600865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016307. PubMed ID: 22400658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic Particle Encapsulation Using a Hyaluronic Acid Solution in a T-Junction Microfluidic Device.
    Jeyasountharan A; Del Giudice F
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method.
    Zhang J; Johnson PC; Popel AS
    J Biomech; 2008; 41(1):47-55. PubMed ID: 17888442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and reversible shape response of red blood cells in synthetic liquid crystals.
    Nayani K; Evans AA; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26083-26090. PubMed ID: 33008877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic microfluidics: progress and challenges.
    Zhou J; Papautsky I
    Microsyst Nanoeng; 2020; 6():113. PubMed ID: 34567720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.