These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38873747)
21. Development of standard tests to examine viscoelastic properties of blood of experimental animals for pediatric mechanical support device evaluation. Marascalco PJ; Ritchie SP; Snyder TA; Kameneva MV ASAIO J; 2006; 52(5):567-74. PubMed ID: 16966861 [TBL] [Abstract][Full Text] [Related]
22. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540 [TBL] [Abstract][Full Text] [Related]
23. Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions. Cho M; Hong SO; Lee SH; Hyun K; Kim JM Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31443169 [TBL] [Abstract][Full Text] [Related]
24. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus. Chang HY; Li X; Karniadakis GE Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858 [TBL] [Abstract][Full Text] [Related]
25. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations. Porcaro C; Saeedipour M Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792 [TBL] [Abstract][Full Text] [Related]
26. Modeling of DNA transport in viscoelastic electro-hydrodynamic flows for enhanced size separation. Chami B; Socol M; Manghi M; Bancaud A Soft Matter; 2018 Jun; 14(24):5069-5079. PubMed ID: 29873390 [TBL] [Abstract][Full Text] [Related]
28. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity. Lázaro GR; Hernández-Machado A; Pagonabarraga I Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872 [TBL] [Abstract][Full Text] [Related]
29. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Fedosov DA; Peltomäki M; Gompper G Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231 [TBL] [Abstract][Full Text] [Related]
30. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Yin X; Thomas T; Zhang J Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384 [TBL] [Abstract][Full Text] [Related]
31. Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. D'Avino G; Romeo G; Villone MM; Greco F; Netti PA; Maffettone PL Lab Chip; 2012 May; 12(9):1638-45. PubMed ID: 22426743 [TBL] [Abstract][Full Text] [Related]
32. Bifurcations in flows of complex fluids around microfluidic cylinders. Haward SJ; Hopkins CC; Varchanis S; Shen AQ Lab Chip; 2021 Oct; 21(21):4041-4059. PubMed ID: 34647558 [TBL] [Abstract][Full Text] [Related]
33. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits. Christov IC J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34678790 [TBL] [Abstract][Full Text] [Related]
34. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220 [TBL] [Abstract][Full Text] [Related]
35. Splitting and separation of colloidal streams in sinusoidal microchannels. Schlenk M; Drechsler M; Karg M; Zimmermann W; Trebbin M; Förster S Lab Chip; 2018 Oct; 18(20):3163-3171. PubMed ID: 30187066 [TBL] [Abstract][Full Text] [Related]
36. Effect of cell geometry in the evaluation of erythrocyte viscoelastic properties. Gómez F; Silva LS; Araújo GRS; Frases S; Pinheiro AAS; Agero U; Pontes B; Viana NB Phys Rev E; 2020 Jun; 101(6-1):062403. PubMed ID: 32688571 [TBL] [Abstract][Full Text] [Related]
37. Controlled viscoelastic particle encapsulation in microfluidic devices. Shahrivar K; Del Giudice F Soft Matter; 2021 Sep; 17(35):8068-8077. PubMed ID: 34525163 [TBL] [Abstract][Full Text] [Related]
38. Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction. Clavería V; Aouane O; Thiébaud M; Abkarian M; Coupier G; Misbah C; John T; Wagner C Soft Matter; 2016 Oct; 12(39):8235-8245. PubMed ID: 27714335 [TBL] [Abstract][Full Text] [Related]
39. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows. Forsyth AM; Wan J; Ristenpart WD; Stone HA Microvasc Res; 2010 Jul; 80(1):37-43. PubMed ID: 20303993 [TBL] [Abstract][Full Text] [Related]
40. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. Park HM; Lee WM J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]