These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38873927)

  • 1. Evaluation of Scatterer Parameters From Ultrasound Scattering Models Taking Into Account Scattering From Nuclei and Cells of Cell-Pellet Biophantoms and Ex Vivo Tumors.
    Muleki-Seya P; O'Brien WD
    Ultrason Imaging; 2024 Jun; ():1617346241256120. PubMed ID: 38873927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Scattering From Cell-Pellet Biophantoms and Ex Vivo Tumors Provides Insight Into the Cellular Structure Involved in Scattering.
    Muleki-Seya P; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):637-649. PubMed ID: 34822328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Characterization of Tissue Microstructure in Concentrated Cell Pellet Biophantoms Based on the Structure Factor Model.
    Franceschini E; Monchy R; Mamou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1321-1334. PubMed ID: 27046896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure factor model for understanding the measured backscatter coefficients from concentrated cell pellet biophantoms.
    Franceschini E; Guillermin R; Tourniaire F; Roffino S; Lamy E; Landrier JF
    J Acoust Soc Am; 2014 Jun; 135(6):3620-31. PubMed ID: 24916409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure function for high-concentration biophantoms of polydisperse scatterer sizes.
    Han A; O'Brien W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):303-18. PubMed ID: 25643080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure Function Estimated From Histological Tissue Sections.
    Han A; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1296-305. PubMed ID: 27046871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of ultrasound backscattering from cell pellet biophantoms and tumors ex vivo.
    Han A; Abuhabsah R; Miller RJ; Sarwate S; O'Brien WD
    J Acoust Soc Am; 2013 Jul; 134(1):686-93. PubMed ID: 23862841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Size Polydispersity and Dense Media on Quantitative Ultrasound Estimates.
    Lombard O; Franceschini E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; 71(5):572-583. PubMed ID: 38526898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic backscatter coefficient quantitative estimates from Chinese hamster ovary cell pellet biophantoms.
    Teisseire M; Han A; Abuhabsah R; Blue JP; Sarwate S; O'Brien WD
    J Acoust Soc Am; 2010 Nov; 128(5):3175-80. PubMed ID: 21110612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sticky Hard Sphere Model for Characterizing Tumor Microstructure via Quantitative Ultrasound.
    Tran Q; O'Brien WD; Han A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 May; PP():. PubMed ID: 38781055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective scatterer diameter estimates for broad scatterer size distributions.
    Nordberg EP; Hall TJ
    Ultrason Imaging; 2015 Jan; 37(1):3-21. PubMed ID: 24831300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Frequency Quantitative Ultrasound Spectroscopy of Excised Canine Livers and Mouse Tumors Using the Structure Factor Model.
    Muleki-Seya P; Guillermin R; Guglielmi J; Chen J; Pourcher T; Konofagou E; Franceschini E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1335-1350. PubMed ID: 27164586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms.
    Franceschini E; Guillermin R
    J Acoust Soc Am; 2012 Dec; 132(6):3735-47. PubMed ID: 23231104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of ultrasonic scattering from scatterer size distributions using Field II.
    Whitson HM; Rosado-Mendez IM; Hale JH; Hall TJ
    J Acoust Soc Am; 2024 Feb; 155(2):1406-1421. PubMed ID: 38364040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cell spatial organization and size distribution on ultrasound backscattering.
    Saha RK; Kolios MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2118-31. PubMed ID: 21989875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Ultrasound: Scattering Theory.
    Oelze M
    Adv Exp Med Biol; 2023; 1403():19-28. PubMed ID: 37495912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method for Stereological Determination of the Structure Function From Histological Sections of Isotropic Scattering Media.
    Han A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1007-1016. PubMed ID: 29856718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain.
    CastaƱeda-Martinez L; Noguchi KK; Ikonomidou C; Zagzebski JA; Hall TJ; Rosado-Mendez IM
    Ultrasound Med Biol; 2020 Aug; 46(8):2044-2056. PubMed ID: 32475715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.