These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38873962)

  • 1. Drop impact dynamics of complex fluids: a review.
    Shah P; Driscoll MM
    Soft Matter; 2024 Jun; 20(25):4839-4858. PubMed ID: 38873962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.
    Bolleddula DA; Berchielli A; Aliseda A
    Adv Colloid Interface Sci; 2010 Sep; 159(2):144-59. PubMed ID: 20638044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of particulate suspensions with non-Newtonian fluids in capillaries.
    Xia B; Krueger PS
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210615. PubMed ID: 35756882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Aspects of Droplet Spreading Dynamics in Newtonian and Non-Newtonian Fluids.
    Gorin B; Di Mauro G; Bonn D; Kellay H
    Langmuir; 2022 Mar; 38(8):2608-2613. PubMed ID: 35179899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface.
    Zhang X; Basaran OA
    J Colloid Interface Sci; 1997 Mar; 187(1):166-78. PubMed ID: 9245326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Shear Flows over Superhydrophobic Surfaces: From Newtonian to Non-Newtonian Fluids.
    Rahmani H; Larachi F; Taghavi SM
    ACS Eng Au; 2024 Apr; 4(2):166-192. PubMed ID: 38646519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the Dynamics and Steady-State Shape of Cylindrical Newtonian Filaments on Solid Substrates.
    Azimi Yancheshme A; Palmese GR; Alvarez NJ
    Langmuir; 2023 Aug; 39(30):10495-10503. PubMed ID: 37470441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence of Microscopic Polymeric Drops: Effect of Drop Impact Velocities.
    Sivasankar VS; Etha SA; Hines DR; Das S
    Langmuir; 2021 Nov; 37(45):13512-13526. PubMed ID: 34724618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids.
    Lu G; Wang XD; Duan YY
    Adv Colloid Interface Sci; 2016 Oct; 236():43-62. PubMed ID: 27521099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing.
    Turkoz E; Perazzo A; Kim H; Stone HA; Arnold CB
    Phys Rev Lett; 2018 Feb; 120(7):074501. PubMed ID: 29542955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal Analysis of a Non-Newtonian Fluid Flow in a Rough-Walled Pipe.
    Bouchendouka A; Fellah ZEA; Larbi Z; Louna Z; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces.
    Biroun MH; Haworth L; Abdolnezhad H; Khosravi A; Agrawal P; McHale G; Torun H; Semprebon C; Jabbari M; Fu YQ
    Langmuir; 2023 Apr; 39(16):5793-5802. PubMed ID: 37041655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of shear-thinning and yield-stress drops on solid substrates.
    German G; Bertola V
    J Phys Condens Matter; 2009 Sep; 21(37):375111. PubMed ID: 21832342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology.
    Min Q; Duan YY; Wang XD; Liang ZP; Lee DJ; Su A
    J Colloid Interface Sci; 2010 Aug; 348(1):250-4. PubMed ID: 20447644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological applications of kinetics of wetting and spreading.
    Ahmed G; Arjmandi Tash O; Cook J; Trybala A; Starov V
    Adv Colloid Interface Sci; 2017 Nov; 249():17-36. PubMed ID: 28919372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Moving Contact Line's Curvature on Dynamic Wetting of non-Newtonian Fluids.
    Wang X; Min Q; Zhang Z; Duan Y
    Langmuir; 2018 Dec; 34(50):15612-15620. PubMed ID: 30461284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.