These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38874041)
1. Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks. Cingoz E; Ertas G; Kaval G; Azamat S; Karaman S; Kulle CB; Berker N; Cingöz M; Dagoglu Sakin N; Comert RG; Buyuk M; Kartal MGD Curr Med Imaging; 2024; 20():e15734056309748. PubMed ID: 38874041 [TBL] [Abstract][Full Text] [Related]
2. Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging. Jang BS; Lim YJ; Song C; Jeon SH; Lee KW; Kang SB; Lee YJ; Kim JS Radiother Oncol; 2021 Aug; 161():183-190. PubMed ID: 34139211 [TBL] [Abstract][Full Text] [Related]
3. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer]. Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment. Aker M; Boone D; Chandramohan A; Sizer B; Motson R; Arulampalam T Abdom Radiol (NY); 2018 Dec; 43(12):3213-3219. PubMed ID: 29767284 [TBL] [Abstract][Full Text] [Related]
6. Prospective evaluation of MR-TRG (Tumor Regression Grade) in esophageal cancer after neo-adjuvant therapy: Preliminary results. Chapellier P; Fasquelle F; Saglietti C; Kinj R; Mantziari S; Schäfer M; Haefliger L; Jreige M; Vietti Violi N; Sempoux C; Dromain C Eur J Radiol; 2024 Feb; 171():111263. PubMed ID: 38159523 [TBL] [Abstract][Full Text] [Related]
7. Response assessment of locally advanced rectal cancer after neoadjuvant chemoradiotherapy: Is apparent diffusion coefficient useful on 3 T magnetic resonance imaging? Boraschi P; Cervelli R; Donati F; Landi E; Cacciato-Insilla A; Campani D; Caramella D Colorectal Dis; 2023 May; 25(5):905-915. PubMed ID: 36638020 [TBL] [Abstract][Full Text] [Related]
8. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
9. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
10. Prospective Correlation of Magnetic Resonance Tumor Regression Grade With Pathologic Outcomes in Total Neoadjuvant Therapy for Rectal Adenocarcinoma. Hall WA; Li J; You YN; Gollub MJ; Grajo JR; Rosen M; dePrisco G; Yothers G; Dorth JA; Rahma OE; Russell MM; Gross HM; Jacobs SA; Faller BA; George S; Al Baghdadi T; Haddock MG; Valicenti R; Hong TS; George TJ J Clin Oncol; 2023 Oct; 41(29):4643-4651. PubMed ID: 37478389 [TBL] [Abstract][Full Text] [Related]
11. MR Imaging with Apparent Diffusion Coefficient Histogram Analysis: Evaluation of Locally Advanced Rectal Cancer after Chemotherapy and Radiation Therapy. Enkhbaatar NE; Inoue S; Yamamuro H; Kawada S; Miyaoka M; Nakamura N; Sadahiro S; Imai Y Radiology; 2018 Jul; 288(1):129-137. PubMed ID: 29558294 [TBL] [Abstract][Full Text] [Related]
12. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
13. Prediction of tumor response after neoadjuvant chemoradiotherapy in rectal cancer using (18)fluorine-2-deoxy-D-glucose positron emission tomography-computed tomography and serum carcinoembryonic antigen: a prospective study. Li QW; Zheng RL; Ling YH; Wang QX; Xiao WW; Zeng ZF; Fan W; Li LR; Gao YH Abdom Radiol (NY); 2016 Aug; 41(8):1448-55. PubMed ID: 27116012 [TBL] [Abstract][Full Text] [Related]
14. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063 [TBL] [Abstract][Full Text] [Related]
15. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images. Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633 [TBL] [Abstract][Full Text] [Related]
16. Deep learning model based on endoscopic images predicting treatment response in locally advanced rectal cancer undergo neoadjuvant chemoradiotherapy: a multicenter study. Zhang J; Liu R; Wang X; Zhang S; Shao L; Liu J; Zhao J; Wang Q; Tian J; Lu Y J Cancer Res Clin Oncol; 2024 Jul; 150(7):350. PubMed ID: 39001926 [TBL] [Abstract][Full Text] [Related]
17. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of diffusion kurtosis and diffusivity from baseline staging MRI as predictive biomarkers for response to neoadjuvant chemoradiation in locally advanced rectal cancer. Bates DDB; Mazaheri Y; Lobaugh S; Golia Pernicka JS; Paroder V; Shia J; Zheng J; Capanu M; Petkovska I; Gollub MJ Abdom Radiol (NY); 2019 Nov; 44(11):3701-3708. PubMed ID: 31154482 [TBL] [Abstract][Full Text] [Related]
19. [Analysis on efficacy and safety of total neoadjuvant therapy in patients with locally advanced rectal cancer with high risk factors]. Ouyang GL; Meng WJ; Shu P; Deng XB; Wu B; Jiang D; Zhuang H; Shen YL; Zhou ZG; Wang ZQ; Wang X Zhonghua Wei Chang Wai Ke Za Zhi; 2019 Apr; 22(4):349-356. PubMed ID: 31054549 [No Abstract] [Full Text] [Related]
20. Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer. Nahas SC; Nahas CSR; Cama GM; de Azambuja RL; Horvat N; Marques CFS; Menezes MR; Junior UR; Cecconello I Abdom Radiol (NY); 2019 Nov; 44(11):3632-3640. PubMed ID: 30663025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]