These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 38874438)

  • 1. Evolution of a Synthetic Strategy toward the Syntheses of Bis-tetrahydroisoquinoline Alkaloids.
    Ngamnithiporn A; Welin ER; Pototschnig G; Stoltz BM
    Acc Chem Res; 2024 Jul; 57(13):1870-1884. PubMed ID: 38874438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concise total syntheses of (-)-jorunnamycin A and (-)-jorumycin enabled by asymmetric catalysis.
    Welin ER; Ngamnithiporn A; Klatte M; Lapointe G; Pototschnig GM; McDermott MSJ; Conklin D; Gilmore CD; Tadross PM; Haley CK; Negoro K; Glibstrup E; Grünanger CU; Allan KM; Virgil SC; Slamon DJ; Stoltz BM
    Science; 2019 Jan; 363(6424):270-275. PubMed ID: 30573544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Total Synthesis of the Tetrahydroisoquinoline Alkaloids (2002-2020).
    Kim AN; Ngamnithiporn A; Du E; Stoltz BM
    Chem Rev; 2023 Aug; 123(15):9447-9496. PubMed ID: 37429001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in the Total Synthesis of Antitumor Tetrahydroisoquinoline Alkaloids.
    Gao Y; Tu N; Liu X; Lu K; Chen S; Guo J
    Chem Biodivers; 2023 May; 20(5):e202300172. PubMed ID: 36939065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products.
    Liu W; Hong B; Wang J; Lei X
    Acc Chem Res; 2020 Nov; 53(11):2569-2586. PubMed ID: 33136373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids.
    Pyne ME; Kevvai K; Grewal PS; Narcross L; Choi B; Bourgeois L; Dueber JE; Martin VJJ
    Nat Commun; 2020 Jul; 11(1):3337. PubMed ID: 32620756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total synthesis of zoanthamine alkaloids.
    Yoshimura F; Tanino K; Miyashita M
    Acc Chem Res; 2012 May; 45(5):746-55. PubMed ID: 22340011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Pursuit of Synthetic Efficiency: Convergent Approaches.
    Gao Y; Ma D
    Acc Chem Res; 2021 Feb; 54(3):569-582. PubMed ID: 33448789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Three-Dimensionally Fascinating Diterpenoid Alkaloids and Related Diterpenes.
    Liu XY; Wang FP; Qin Y
    Acc Chem Res; 2021 Jan; 54(1):22-34. PubMed ID: 33351595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric total synthesis of (-)-jorunnamycins A and C and (-)-jorumycin from L-tyrosine.
    Chen R; Liu H; Chen X
    J Nat Prod; 2013 Sep; 76(9):1789-95. PubMed ID: 24070054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design.
    Faheem ; Karan Kumar B; Venkata Gowri Chandra Sekhar K; Chander S; Kunjiappan S; Murugesan S
    Expert Opin Drug Discov; 2021 Oct; 16(10):1119-1147. PubMed ID: 33908322
    [No Abstract]   [Full Text] [Related]  

  • 12. Recent advances in the synthesis and activity of analogues of bistetrahydroisoquinoline alkaloids as antitumor agents.
    Guo J
    Eur J Med Chem; 2023 Dec; 262():115917. PubMed ID: 37925762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Research on Antitumor Isoquinoline Marine Natural Products and Related Compounds.
    Saito N
    Chem Pharm Bull (Tokyo); 2021; 69(2):155-177. PubMed ID: 33518599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs - biological activities and SAR studies.
    Faheem ; Karan Kumar B; Chandra Sekhar KVG; Chander S; Kunjiappan S; Murugesan S
    RSC Adv; 2021 Mar; 11(20):12254-12287. PubMed ID: 35423735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging Marine Natural Products as a Platform to Tackle Bacterial Resistance and Persistence.
    Valdes-Pena MA; Massaro NP; Lin YC; Pierce JG
    Acc Chem Res; 2021 Apr; 54(8):1866-1877. PubMed ID: 33733746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organocatalytic enantioselective Pictet-Spengler approach to biologically relevant 1-benzyl-1,2,3,4-tetrahydroisoquinoline alkaloids.
    Ruiz-Olalla A; Würdemann MA; Wanner MJ; Ingemann S; van Maarseveen JH; Hiemstra H
    J Org Chem; 2015 May; 80(10):5125-32. PubMed ID: 25909585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Catalytic Asymmetric Pictet-Spengler Platform as a Biomimetic Diversification Strategy toward Naturally Occurring Alkaloids.
    Scharf MJ; List B
    J Am Chem Soc; 2022 Aug; 144(34):15451-15456. PubMed ID: 35976162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pictet-Spengler Reaction Updates Its Habits.
    Calcaterra A; Mangiardi L; Delle Monache G; Quaglio D; Balducci S; Berardozzi S; Iazzetti A; Franzini R; Botta B; Ghirga F
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids.
    Zi W; Zuo Z; Ma D
    Acc Chem Res; 2015 Mar; 48(3):702-11. PubMed ID: 25667972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A concise total synthesis of (-)-quinocarcin via aryne annulation.
    Allan KM; Stoltz BM
    J Am Chem Soc; 2008 Dec; 130(51):17270-1. PubMed ID: 19035638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.