These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 38874817)
61. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. Mahapatra S; Yadav R; Ramakrishna W J Appl Microbiol; 2022 May; 132(5):3543-3562. PubMed ID: 35137494 [TBL] [Abstract][Full Text] [Related]
62. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Phour M; Sindhu SS Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564 [TBL] [Abstract][Full Text] [Related]
63. Plant growth promoting potential of bacteria isolated on N free media from rhizosphere of Cassia occidentalis. Arun B; Gopinath B; Sharma S World J Microbiol Biotechnol; 2012 Sep; 28(9):2849-57. PubMed ID: 22806725 [TBL] [Abstract][Full Text] [Related]
64. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. Zhuang Y; Wang H; Tan F; Wu B; Liu L; Qin H; Yang Z; He M Plant Physiol Biochem; 2024 May; 210():108619. PubMed ID: 38604013 [TBL] [Abstract][Full Text] [Related]
65. Rhizosphere Microbiome Modulators: Contributions of Nitrogen Fixing Bacteria towards Sustainable Agriculture. Igiehon NO; Babalola OO Int J Environ Res Public Health; 2018 Mar; 15(4):. PubMed ID: 29570619 [TBL] [Abstract][Full Text] [Related]
66. Identification of microbial signatures linked to oilseed rape yield decline at the landscape scale. Hilton S; Picot E; Schreiter S; Bass D; Norman K; Oliver AE; Moore JD; Mauchline TH; Mills PR; Teakle GR; Clark IM; Hirsch PR; van der Gast CJ; Bending GD Microbiome; 2021 Jan; 9(1):19. PubMed ID: 33482913 [TBL] [Abstract][Full Text] [Related]
67. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley ( Kaur T; Devi R; Kumar S; Sheikh I; Kour D; Yadav AN Heliyon; 2022 Apr; 8(4):e09326. PubMed ID: 35520606 [TBL] [Abstract][Full Text] [Related]
68. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Bukhat S; Imran A; Javaid S; Shahid M; Majeed A; Naqqash T Microbiol Res; 2020 Sep; 238():126486. PubMed ID: 32464574 [TBL] [Abstract][Full Text] [Related]
69. The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype. Cunha ICMD; Silva AVRD; Boleta EHM; Pellegrinetti TA; Zagatto LFG; Zagatto SDSS; Chaves MG; Mendes R; Patreze CM; Tsai SM; Mendes LW Microbiol Res; 2024 Jun; 283():127706. PubMed ID: 38574431 [TBL] [Abstract][Full Text] [Related]
70. Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Trivedi P; Schenk PM; Wallenstein MD; Singh BK Microb Biotechnol; 2017 Sep; 10(5):999-1003. PubMed ID: 28840959 [TBL] [Abstract][Full Text] [Related]
71. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Geddes BA; Paramasivan P; Joffrin A; Thompson AL; Christensen K; Jorrin B; Brett P; Conway SJ; Oldroyd GED; Poole PS Nat Commun; 2019 Jul; 10(1):3430. PubMed ID: 31366919 [TBL] [Abstract][Full Text] [Related]
72. Bacterial rhizosphere community profile at different growth stages of Umorok (Capsicum chinense) and its response to the root exudates. T A PD; Sahoo D; Setti A; Sharma C; Kalita MC; S ID Int Microbiol; 2020 May; 23(2):241-251. PubMed ID: 31485795 [TBL] [Abstract][Full Text] [Related]
73. Management of abiotic stresses by microbiome-based engineering of the rhizosphere. Tyagi R; Pradhan S; Bhattacharjee A; Dubey S; Sharma S J Appl Microbiol; 2022 Aug; 133(2):254-272. PubMed ID: 35352450 [TBL] [Abstract][Full Text] [Related]
74. Facilitating Growth of Maize ( Shi J; Zhao B; Zhao L; Zha Y; Yu X; Yu B; Luo L; Wu J; Yue E J Agric Food Chem; 2024 Feb; 72(7):3415-3426. PubMed ID: 38325817 [TBL] [Abstract][Full Text] [Related]
75. Advances in Soil Engineering: Sustainable Strategies for Rhizosphere and Bulk Soil Microbiome Enrichment. Araujo R Front Biosci (Landmark Ed); 2022 Jun; 27(6):195. PubMed ID: 35748271 [TBL] [Abstract][Full Text] [Related]
76. Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Banik A; Pandya P; Patel B; Rathod C; Dangar M Sci Total Environ; 2018 Jul; 630():231-242. PubMed ID: 29482138 [TBL] [Abstract][Full Text] [Related]
77. Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth-promoting organisms and maintenance of disease-suppressive soil. Barelli L; Waller AS; Behie SW; Bidochka MJ PLoS One; 2020; 15(4):e0231150. PubMed ID: 32275687 [TBL] [Abstract][Full Text] [Related]
78. Microbes to support plant health: understanding bioinoculant success in complex conditions. Poppeliers SW; Sánchez-Gil JJ; de Jonge R Curr Opin Microbiol; 2023 Jun; 73():102286. PubMed ID: 36878082 [TBL] [Abstract][Full Text] [Related]
79. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. Zuluaga MYA; Lima Milani KM; Azeredo Gonçalves LS; Martinez de Oliveira AL PLoS One; 2020; 15(1):e0227422. PubMed ID: 31923250 [TBL] [Abstract][Full Text] [Related]
80. Evolution of bacterial communities in the wheat crop rhizosphere. Donn S; Kirkegaard JA; Perera G; Richardson AE; Watt M Environ Microbiol; 2015 Mar; 17(3):610-21. PubMed ID: 24628845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]