These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 38874856)
1. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Singh D; Mittal N; Mittal P; Siddiqui MH Mol Biol Rep; 2024 Jun; 51(1):757. PubMed ID: 38874856 [TBL] [Abstract][Full Text] [Related]
2. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203 [No Abstract] [Full Text] [Related]
3. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. Yang L; Ding G; Lin H; Cheng H; Kong Y; Wei Y; Fang X; Liu R; Wang L; Chen X; Yang C PLoS One; 2013; 8(11):e80464. PubMed ID: 24260395 [TBL] [Abstract][Full Text] [Related]
4. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Rai A; Nakamura M; Takahashi H; Suzuki H; Saito K; Yamazaki M Plant Cell Rep; 2016 Oct; 35(10):2091-111. PubMed ID: 27378356 [TBL] [Abstract][Full Text] [Related]
5. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja. Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome analysis of Lantana camara L. revealed candidate genes involved in phenylpropanoid biosynthesis pathway. Shah M; Alharby HF; Hakeem KR; Ali N; Rahman IU; Munawar M; Anwar Y Sci Rep; 2020 Aug; 10(1):13726. PubMed ID: 32792567 [TBL] [Abstract][Full Text] [Related]
7. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. Pal T; Malhotra N; Chanumolu SK; Chauhan RS Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478 [TBL] [Abstract][Full Text] [Related]
8. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
9. De novo assembly and characterization of transcriptome in the medicinal plant Euphorbia jolkini. Roy NS; Lee IH; Kim JA; Ramekar RV; Park KC; Park NI; Yeo JH; Choi IY; Kim S Genes Genomics; 2020 Sep; 42(9):1011-1021. PubMed ID: 32715384 [TBL] [Abstract][Full Text] [Related]
10. De novo transcriptome analysis of the critically endangered alpine Himalayan herb Nardostachys jatamansi reveals the biosynthesis pathway genes of tissue-specific secondary metabolites. Dhiman N; Kumar A; Kumar D; Bhattacharya A Sci Rep; 2020 Oct; 10(1):17186. PubMed ID: 33057076 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis to identify key genes involved in terpenoid and rosmarinic acid biosynthesis in lemon balm (Melissa officinalis). Mansouri M; Mohammadi F Gene; 2021 Mar; 773():145417. PubMed ID: 33444679 [TBL] [Abstract][Full Text] [Related]
12. De novo assembly and annotation of Salvia splendens transcriptome using the Illumina platform. Ge X; Chen H; Wang H; Shi A; Liu K PLoS One; 2014; 9(3):e87693. PubMed ID: 24622329 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related]
14. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Lateef A; Prabhudas SK; Natarajan P Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. Ma J; Kanakala S; He Y; Zhang J; Zhong X PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053 [TBL] [Abstract][Full Text] [Related]
17. Temporal transcriptome changes induced by methyl jasmonate in Salvia sclarea. Hao da C; Chen SL; Osbourn A; Kontogianni VG; Liu LW; Jordán MJ Gene; 2015 Mar; 558(1):41-53. PubMed ID: 25536164 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome Sequencing and Analysis for Culm Elongation of the World's Largest Bamboo (Dendrocalamus sinicus). Cui K; Wang H; Liao S; Tang Q; Li L; Cui Y; He Y PLoS One; 2016; 11(6):e0157362. PubMed ID: 27304219 [TBL] [Abstract][Full Text] [Related]
19. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. Zhao S; Tuan PA; Li X; Kim YB; Kim H; Park CG; Yang J; Li CH; Park SU BMC Genomics; 2013 Nov; 14(1):802. PubMed ID: 24252158 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. Jin SW; Rahim MA; Afrin KS; Park JI; Kang JG; Nou IS BMC Genomics; 2018 Nov; 19(1):797. PubMed ID: 30400854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]