These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38875329)

  • 1. An alternative to the igneous crust fluid + sediment melt paradigm for arc lava geochemistry.
    Turner SJ; Langmuir CH
    Sci Adv; 2024 Jun; 10(24):eadg6482. PubMed ID: 38875329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium isotope geochemistry in arc volcanism.
    Teng FZ; Hu Y; Chauvel C
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7082-7. PubMed ID: 27303032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting of subducted slab dictates trace element recycling in global arcs.
    Li H; Hermann J; Zhang L
    Sci Adv; 2022 Jan; 8(2):eabh2166. PubMed ID: 35020421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical evidence for mélange melting in global arcs.
    Nielsen SG; Marschall HR
    Sci Adv; 2017 Apr; 3(4):e1602402. PubMed ID: 28435882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.
    Kessel R; Schmidt MW; Ulmer P; Pettke T
    Nature; 2005 Sep; 437(7059):724-7. PubMed ID: 16193050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.
    Kawamoto T; Kanzaki M; Mibe K; Matsukage KN; Ono S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18695-700. PubMed ID: 23112158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.
    Yogodzinski GM; Lees JM; Churikova TG; Dorendorf F; Wöerner G; Volynets ON
    Nature; 2001 Jan; 409(6819):500-4. PubMed ID: 11206543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.
    Farris DW; Cardona A; Montes C; Foster D; Jaramillo C
    PLoS One; 2017; 12(5):e0176010. PubMed ID: 28489866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration.
    Chen S; Hin RC; John T; Brooker R; Bryan B; Niu Y; Elliott T
    Nat Commun; 2019 Oct; 10(1):4773. PubMed ID: 31636258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions.
    Rose EF; Shimizu N; Layne GD; Grove TL
    Science; 2001 Jul; 293(5528):281-3. PubMed ID: 11452119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.
    McGary RS; Evans RL; Wannamaker PE; Elsenbeck J; Rondenay S
    Nature; 2014 Jul; 511(7509):338-40. PubMed ID: 25030172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slab melting versus slab dehydration in subduction-zone magmatism.
    Mibe K; Kawamoto T; Matsukage KN; Fei Y; Ono S
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8177-82. PubMed ID: 21536910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.
    Manea VC; Leeman WP; Gerya T; Manea M; Zhu G
    Nat Commun; 2014 Oct; 5():5095. PubMed ID: 25342158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.
    Zhao ZF; Dai LQ; Zheng YF
    Sci Rep; 2013 Dec; 3():3413. PubMed ID: 24301173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles.
    Paulatto M; Laigle M; Galve A; Charvis P; Sapin M; Bayrakci G; Evain M; Kopp H
    Nat Commun; 2017 Jul; 8():15980. PubMed ID: 28691714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust.
    Hawkesworth CJ; Turner SP; McDermott F; Peate DW; van Calsteren P
    Science; 1997 Apr; 276(5312):551-5. PubMed ID: 9110968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Mg# of the continental crust explained by calc-alkaline differentiation.
    Tang M; Liu X; Chen K
    Natl Sci Rev; 2023 Mar; 10(3):nwac258. PubMed ID: 36875781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic variables and water transport control the formation and location of arc volcanoes.
    Grove TL; Till CB; Lev E; Chatterjee N; Médard E
    Nature; 2009 Jun; 459(7247):694-7. PubMed ID: 19494913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust.
    Prouteau G; Scaillet B; Pichavant M; Maury R
    Nature; 2001 Mar; 410(6825):197-200. PubMed ID: 11242077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust.
    Cooper GF; Davidson JP; Blundy JD
    Contrib Mineral Petrol; 2016; 171(10):87. PubMed ID: 32355359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.