These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38875337)

  • 1. Memory-less scattering imaging with ultrafast convolutional optical neural networks.
    Zhang Y; Zhang Q; Yu H; Zhang Y; Luan H; Gu M
    Sci Adv; 2024 Jun; 10(24):eadn2205. PubMed ID: 38875337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OP-FCNN: an optronic fully convolutional neural network for imaging through scattering media.
    Huang Z; Gu Z; Shi M; Gao Y; Liu X
    Opt Express; 2024 Jan; 32(1):444-456. PubMed ID: 38175074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge distillation circumvents nonlinearity for optical convolutional neural networks.
    Xiang J; Colburn S; Majumdar A; Shlizerman E
    Appl Opt; 2022 Mar; 61(9):2173-2183. PubMed ID: 35333231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-Based Reconfigurable Scattering Masks for Lensless Imaging.
    Miller JR; Wang CY; Keating CD; Liu Z
    ACS Nano; 2020 Oct; 14(10):13038-13046. PubMed ID: 32929968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon-Based Metastructure Optical Scattering Multiply-Accumulate Computation Chip.
    Liu X; Zhu X; Wang C; Cao Y; Wang B; Ou H; Wu Y; Mei Q; Zhang J; Cong Z; Liu R
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrapolated speckle-correlation imaging with an untrained deep neural network.
    Mashiko R; Tanida J; Naruse M; Horisaki R
    Appl Opt; 2023 Nov; 62(31):8327-8333. PubMed ID: 38037936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-generalization deep sparse pattern reconstruction: feature extraction of speckles using self-attention armed convolutional neural networks.
    Wang Y; Lin Z; Wang H; Hu C; Yang H; Gu M
    Opt Express; 2021 Oct; 29(22):35702-35711. PubMed ID: 34808999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media.
    Yuliansyah DR; Pan MC; Hsu YF
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High speed color imaging through scattering media with a large field of view.
    Zhuang H; He H; Xie X; Zhou J
    Sci Rep; 2016 Sep; 6():32696. PubMed ID: 27599398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect.
    Guo E; Zhu S; Sun Y; Bai L; Zuo C; Han J
    Opt Express; 2020 Jan; 28(2):2433-2446. PubMed ID: 32121933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-to-all lightweight Fourier channel attention convolutional neural network for speckle reconstructions.
    Lan B; Wang H; Wang Y
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):2238-2245. PubMed ID: 36520741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way.
    Yu Y; Cao Y; Wang G; Pang Y; Lang L
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chip-Based High-Dimensional Optical Neural Network.
    Wang X; Xie P; Chen B; Zhang X
    Nanomicro Lett; 2022 Nov; 14(1):221. PubMed ID: 36374430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extendible ghost imaging with high reconstruction quality in strong scattering medium.
    Gao Z; Cheng X; Yue J; Hao Q
    Opt Express; 2022 Dec; 30(25):45759-45775. PubMed ID: 36522974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination.
    Zhu L; Soldevila F; Moretti C; d'Arco A; Boniface A; Shao X; de Aguiar HB; Gigan S
    Nat Commun; 2022 Mar; 13(1):1447. PubMed ID: 35304460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Based Single-Cell Optical Image Studies.
    Sun J; Tárnok A; Su X
    Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging through scattering media using semidefinite programming.
    Chen H; Gao Y; Liu X; Zhou Z
    J Biomed Opt; 2018 Nov; 24(3):1-11. PubMed ID: 30499267
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.