These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38875344)

  • 1. Programmable nonreciprocal Poynting effect enabled by lattice metamaterials.
    Dong L; Zhou K; Wang D
    Sci Adv; 2024 Jun; 10(24):eadl5774. PubMed ID: 38875344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted and Programmable Poynting Effects in Metamaterials.
    Ghorbani A; Dykstra D; Coulais C; Bonn D; van der Linden E; Habibi M
    Adv Sci (Weinh); 2021 Oct; 8(20):e2102279. PubMed ID: 34402215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter.
    Agarwal M; Pelegri AA
    Heliyon; 2024 Feb; 10(3):e25379. PubMed ID: 38371981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonreciprocal elasticity and the realization of static and dynamic nonreciprocity.
    Shaat M
    Sci Rep; 2020 Dec; 10(1):21676. PubMed ID: 33303785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable nonreciprocal meta-prism.
    Taravati S; Eleftheriades GV
    Sci Rep; 2021 Apr; 11(1):7377. PubMed ID: 33795766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of the Poynting effect in a soft unidirectional fiber-reinforced material under simple shear.
    Araújo FS; Nunes LCS
    Soft Matter; 2020 Sep; 16(34):7950-7957. PubMed ID: 32766622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials.
    Chen Z; Peng Y; Li H; Liu J; Ding Y; Liang B; Zhu XF; Lu Y; Cheng J; Alù A
    Sci Adv; 2021 Nov; 7(45):eabj1198. PubMed ID: 34731003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple Plexcitonic Nonreciprocity of Magnetochiral Plexcitons.
    He C; Liang K; Deng X; Liang X; Zhang J; Yu L
    Nano Lett; 2024 Jul; 24(30):9377-9384. PubMed ID: 39011986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.
    Zhang Z; Koroleva I; Manevitch LI; Bergman LA; Vakakis AF
    Phys Rev E; 2016 Sep; 94(3-1):032214. PubMed ID: 27739799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect.
    Shui T; Yang WX; Cheng MT; Lee RK
    Opt Express; 2022 Feb; 30(4):6284-6299. PubMed ID: 35209569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonreciprocity Realized with Quantum Nonlinearity.
    Rosario Hamann A; Müller C; Jerger M; Zanner M; Combes J; Pletyukhov M; Weides M; Stace TM; Fedorov A
    Phys Rev Lett; 2018 Sep; 121(12):123601. PubMed ID: 30296135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.
    Bai Y; Liu C; Li Y; Li J; Qiao L; Zhou J; Bai Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35905-35916. PubMed ID: 35880735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression Deformation Prediction of Chiral Metamaterials: A Compression-Shear Coupling Model.
    Zhou X; Liang X; Liu Z; Tao C; Li H
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics.
    Hu F; Wang W; Cheng J; Bao Y
    Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canceling the elastic Poynting effect with geometry.
    Destrade M; Du Y; Blackwell J; Colgan N; Balbi V
    Phys Rev E; 2023 May; 107(5):L053001. PubMed ID: 37329069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming nonreciprocity and reversibility in multistable mechanical metamaterials.
    Librandi G; Tubaldi E; Bertoldi K
    Nat Commun; 2021 Jun; 12(1):3454. PubMed ID: 34103522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonreciprocal field transformation with active acoustic metasurfaces.
    Wen X; Cho C; Zhu X; Park N; Li J
    Sci Adv; 2024 May; 10(22):eadm9673. PubMed ID: 38820157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocal Transmission of Incoherent Magnons with Asymmetric Diffusion Length.
    Han J; Fan Y; McGoldrick BC; Finley J; Hou JT; Zhang P; Liu L
    Nano Lett; 2021 Aug; 21(16):7037-7043. PubMed ID: 34374550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poynting and reverse Poynting effects in soft materials.
    Horgan CO; Murphy JG
    Soft Matter; 2017 Jul; 13(28):4916-4923. PubMed ID: 28702660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of one-dimensional nonreciprocal acoustic metamaterial with anti-parallel diodes.
    Petrover K; Baz A
    J Acoust Soc Am; 2020 Jul; 148(1):334. PubMed ID: 32752777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.