These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 38875590)
1. Predictive Performance of Machine Learning-Based Models for Poststroke Clinical Outcomes in Comparison With Conventional Prognostic Scores: Multicenter, Hospital-Based Observational Study. Irie F; Matsumoto K; Matsuo R; Nohara Y; Wakisaka Y; Ago T; Nakashima N; Kitazono T; Kamouchi M JMIR AI; 2024 Jan; 3():e46840. PubMed ID: 38875590 [TBL] [Abstract][Full Text] [Related]
2. Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke. Matsumoto K; Nohara Y; Soejima H; Yonehara T; Nakashima N; Kamouchi M Stroke; 2020 May; 51(5):1477-1483. PubMed ID: 32208843 [TBL] [Abstract][Full Text] [Related]
3. Early Prediction of Functional Outcomes After Acute Ischemic Stroke Using Unstructured Clinical Text: Retrospective Cohort Study. Sung SF; Hsieh CY; Hu YH JMIR Med Inform; 2022 Feb; 10(2):e29806. PubMed ID: 35175201 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty. Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN; Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976 [TBL] [Abstract][Full Text] [Related]
5. Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm. Huang CC; Peng KP; Hsieh HC; Groot OQ; Yen HK; Tsai CC; Karhade AV; Lin YP; Kao YT; Yang JJ; Dai SH; Huang CC; Chen CW; Yen MH; Xiao FR; Lin WH; Verlaan JJ; Schwab JH; Hsu FM; Wong T; Yang RS; Yang SH; Hu MH Clin Orthop Relat Res; 2024 Jan; 482(1):143-157. PubMed ID: 37306629 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Heo J; Yoon JG; Park H; Kim YD; Nam HS; Heo JH Stroke; 2019 May; 50(5):1263-1265. PubMed ID: 30890116 [TBL] [Abstract][Full Text] [Related]
8. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
9. Can Machine-learning Techniques Be Used for 5-year Survival Prediction of Patients With Chondrosarcoma? Thio QCBS; Karhade AV; Ogink PT; Raskin KA; De Amorim Bernstein K; Lozano Calderon SA; Schwab JH Clin Orthop Relat Res; 2018 Oct; 476(10):2040-2048. PubMed ID: 30179954 [TBL] [Abstract][Full Text] [Related]
10. Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models. Alaka SA; Menon BK; Brobbey A; Williamson T; Goyal M; Demchuk AM; Hill MD; Sajobi TT Front Neurol; 2020; 11():889. PubMed ID: 32982920 [No Abstract] [Full Text] [Related]
11. Machine learning is an effective method to predict the 90-day prognosis of patients with transient ischemic attack and minor stroke. Chen SD; You J; Yang XM; Gu HQ; Huang XY; Liu H; Feng JF; Jiang Y; Wang YJ BMC Med Res Methodol; 2022 Jul; 22(1):195. PubMed ID: 35842606 [TBL] [Abstract][Full Text] [Related]
12. Natural Language Processing Enhances Prediction of Functional Outcome After Acute Ischemic Stroke. Sung SF; Chen CH; Pan RC; Hu YH; Jeng JS J Am Heart Assoc; 2021 Dec; 10(24):e023486. PubMed ID: 34796719 [TBL] [Abstract][Full Text] [Related]
13. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087 [TBL] [Abstract][Full Text] [Related]
14. Hospital Length of Stay and 30-Day Mortality Prediction in Stroke: A Machine Learning Analysis of 17,000 ICU Admissions in Brazil. Kurtz P; Peres IT; Soares M; Salluh JIF; Bozza FA Neurocrit Care; 2022 Aug; 37(Suppl 2):313-321. PubMed ID: 35381967 [TBL] [Abstract][Full Text] [Related]
15. The Prognostic Value of the iScore, the PLAN Score, and the ASTRAL Score in Acute Ischemic Stroke. Wang WY; Sang WW; Jin D; Yan SM; Hong Y; Zhang H; Yang X J Stroke Cerebrovasc Dis; 2017 Jun; 26(6):1233-1238. PubMed ID: 28236594 [TBL] [Abstract][Full Text] [Related]
16. The Prognostic Value of the THRIVE Score, the iScore Score and the ASTRAL Score in Chinese Patients With Acute Ischemic Stroke. Shen B; Yang X; Sui RB; Yang B J Stroke Cerebrovasc Dis; 2018 Oct; 27(10):2877-2886. PubMed ID: 30077603 [TBL] [Abstract][Full Text] [Related]
17. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty. Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804 [TBL] [Abstract][Full Text] [Related]
18. Patients With Femoral Neck Fractures Are at Risk for Conversion to Arthroplasty After Internal Fixation: A Machine-learning Algorithm. van de Kuit A; Oosterhoff JHF; Dijkstra H; Sprague S; Bzovsky S; Bhandari M; Swiontkowski M; Schemitsch EH; IJpma FFA; Poolman RW; Doornberg JN; Hendrickx LAM; Clin Orthop Relat Res; 2022 Dec; 480(12):2350-2360. PubMed ID: 35767811 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]