These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38875640)

  • 1. Optomagnetism with a plasmonic skyrmion.
    Karakhanyan V; Grosjean T
    Opt Lett; 2024 Jun; 49(12):3440-3443. PubMed ID: 38875640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Beam Lithography of Magnetic Skyrmions.
    Guang Y; Peng Y; Yan Z; Liu Y; Zhang J; Zeng X; Zhang S; Zhang S; Burn DM; Jaouen N; Wei J; Xu H; Feng J; Fang C; van der Laan G; Hesjedal T; Cui B; Zhang X; Yu G; Han X
    Adv Mater; 2020 Oct; 32(39):e2003003. PubMed ID: 32812294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization and racetrack application of asymmetric Néel skyrmions in hybrid nanostructures.
    Zelent M; Moalic M; Mruczkiewicz M; Li X; Zhou Y; Krawczyk M
    Sci Rep; 2023 Aug; 13(1):13572. PubMed ID: 37604926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Dielectric Nanophotonics Enables Tunable Excitation of the Exchange Spin Waves.
    Chernov AI; Kozhaev MA; Ignatyeva DO; Beginin EN; Sadovnikov AV; Voronov AA; Karki D; Levy M; Belotelov VI
    Nano Lett; 2020 Jul; 20(7):5259-5266. PubMed ID: 32515967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tesla-Range Femtosecond Pulses of Stationary Magnetic Field, Optically Generated at the Nanoscale in a Plasmonic Antenna.
    Yang X; Mou Y; Gallas B; Maitre A; Coolen L; Mivelle M
    ACS Nano; 2022 Jan; 16(1):386-393. PubMed ID: 34962766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin structure relation to phase contrast imaging of isolated magnetic Bloch and Néel skyrmions.
    Pöllath S; Lin T; Lei N; Zhao W; Zweck J; Back CH
    Ultramicroscopy; 2020 May; 212():112973. PubMed ID: 32151794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast optical excitation of magnetic skyrmions.
    Ogawa N; Seki S; Tokura Y
    Sci Rep; 2015 Apr; 5():9552. PubMed ID: 25897634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Creation of Skyrmions by Spin Reorientation Transition in Ferrimagnetic CoHo Alloys.
    Zhang W; Huang TX; Hehn M; Malinowski G; Verges M; Hohlfeld J; Remy Q; Lacour D; Wang XR; Zhao GP; Vallobra P; Xu Y; Mangin S; Zhao WS
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5608-5619. PubMed ID: 36689950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution.
    Davis TJ; Janoschka D; Dreher P; Frank B; Meyer Zu Heringdorf FJ; Giessen H
    Science; 2020 Apr; 368(6489):. PubMed ID: 32327571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Shot Multi-Level All-Optical Magnetization Switching Mediated by Spin Transport.
    Iihama S; Xu Y; Deb M; Malinowski G; Hehn M; Gorchon J; Fullerton EE; Mangin S
    Adv Mater; 2018 Dec; 30(51):e1804004. PubMed ID: 30335226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Kasai S; Otani Y
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Magnetic Skyrmion States at Room Temperature Confined to Corrals of Artificial Surface Pits Fabricated by a Focused Electron Beam.
    Matsumoto T; So YG; Kohno Y; Ikuhara Y; Shibata N
    Nano Lett; 2018 Feb; 18(2):754-762. PubMed ID: 29360375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Skyrmion Materials.
    Tokura Y; Kanazawa N
    Chem Rev; 2021 Mar; 121(5):2857-2897. PubMed ID: 33164494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He
    Kern LM; Pfau B; Deinhart V; Schneider M; Klose C; Gerlinger K; Wittrock S; Engel D; Will I; Günther CM; Liefferink R; Mentink JH; Wintz S; Weigand M; Huang MJ; Battistelli R; Metternich D; Büttner F; Höflich K; Eisebitt S
    Nano Lett; 2022 May; 22(10):4028-4035. PubMed ID: 35577328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic manipulation of graphene plasmonic skyrmions.
    Zhang N; Lei X; Liu J; Zhan Q
    Opt Express; 2023 Sep; 31(19):30020-30029. PubMed ID: 37710554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the geometry of the excitation structure on optical skyrmion.
    Chen J; Ji B; Lang P; Zhang Y; Lin J
    Opt Express; 2023 Nov; 31(23):37929-37942. PubMed ID: 38017912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.
    Ma F; Ezawa M; Zhou Y
    Sci Rep; 2015 Oct; 5():15154. PubMed ID: 26468929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-Induced Reversible Motion of Skyrmions at Room Temperature.
    Liu C; Wang J; He W; Zhang C; Zhang S; Yuan S; Hou Z; Qin M; Xu Y; Gao X; Peng Y; Liu K; Qiu ZQ; Liu JM; Zhang X
    ACS Nano; 2024 Jan; 18(1):761-769. PubMed ID: 38127497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR; Guslienko KY
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.