BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38875651)

  • 1. Tunable giant Goos-Hänchen shift in Au-ReS
    Yan Y; Zha M; Liu J; Tu J; Liu Z
    Opt Lett; 2024 Jun; 49(12):3484-3487. PubMed ID: 38875651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor.
    Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Goos-Hänchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure.
    Liu Z; Lu F; Jiang L; Lin W; Zheng Z
    Biosensors (Basel); 2021 Jun; 11(6):. PubMed ID: 34205540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure.
    Han L; Hu Z; Pan J; Huang T; Luo D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant and controllable Goos-Hänchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure.
    Zhang C; Hong Y; Li Z; Da H
    Appl Opt; 2022 Jan; 61(3):844-850. PubMed ID: 35200793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Goos-Hänchen shift from graphene ribbon array.
    Zeng X; Al-Amri M; Zubairy MS
    Opt Express; 2017 Oct; 25(20):23579-23588. PubMed ID: 29041309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Enhancement of the Goos-Hänchen Shift with a Metasurface Based on Bound States in the Continuum.
    Jiang X; Fang B; Zhan C
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of an enhanced Goos-Hänchen shift sensor based on a BlueP/TMDC/graphene hybrid.
    Ji Q; Yan B; Han L; Wang J; Yang M; Wu C
    Appl Opt; 2020 Sep; 59(27):8355-8361. PubMed ID: 32976422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature controllable Goos-Hänchen shift and high reflectance of monolayer graphene induced by BK7 glass grating.
    Lu D; Shanshan M; Zhu X; Da H
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35994973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak measurement of magneto-optical Goos-Hänchen effect.
    Tang T; Li J; Luo L; Shen J; Li C; Qin J; Bi L; Hou J
    Opt Express; 2019 Jun; 27(13):17638-17647. PubMed ID: 31252720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Goos-Hänchen shift based on magnetic dipole quasi-bound states in the continuum in all-dielectric metasurfaces.
    Zheng Z; Zhu Y; Duan J; Qin M; Wu F; Xiao S
    Opt Express; 2021 Aug; 29(18):29541-29549. PubMed ID: 34615062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure.
    Saito H; Neo Y; Matsumoto T; Tomita M
    Opt Express; 2019 Sep; 27(20):28629-28639. PubMed ID: 31684611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect.
    Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F
    Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity Enhanced Plasmonic Biosensor Using Bi
    Du F; Zheng K; Zeng S; Yuan Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of giant Goos-Hänchen shift and high reflectance in Dirac semimetal based multilayered structure.
    Yin D; Liu W; Zhang M; Da H
    Phys Chem Chem Phys; 2024 Apr; 26(14):10974-10981. PubMed ID: 38526392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure.
    Tang T; Qin J; Xie J; Deng L; Bi L
    Opt Express; 2014 Nov; 22(22):27042-55. PubMed ID: 25401854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant and tunable Goos-Hänchen shift with a high reflectance induced by PT-symmetry in atomic vapor.
    Han P; Li W; Zhou Y; Jiang S; Chang X; Huang A; Zhang H; Xiao Z
    Opt Express; 2021 Sep; 29(19):30436-30448. PubMed ID: 34614773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Metasensors Based on 2D Hybrid Atomically Thin Perovskite Nanomaterials.
    Zeng S; Liang G; Gheno A; Vedraine S; Ratier B; Ho HP; Yu N
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32629982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures.
    Cao Y; Fu Y; Zhou Q; Xu Y; Gao L; Chen H
    Opt Express; 2019 Mar; 27(6):7857-7867. PubMed ID: 31052613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.