These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38875713)

  • 1. Hydrophobic Aerogels from Vinyl Polymers Derived from Radical Polymerization: Proof-of-Concept.
    Adolfs C; Altarabeen R; Kimmritz L; Gibowsky L; Schroeter B; Beuermann S; Smirnova I
    Macromol Rapid Commun; 2024 Aug; 45(15):e2400147. PubMed ID: 38875713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(urethane-norbornene) Aerogels via Ring Opening Metathesis Polymerization of Dendritic Urethane-Norbornene Monomers: Structure-Property Relationships as a Function of an Aliphatic Versus an Aromatic Core and the Number of Peripheral Norbornene Moieties.
    Kanellou A; Anyfantis GC; Chriti D; Raptopoulos G; Pitsikalis M; Paraskevopoulou P
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29693614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.
    Lei C; Li J; Sun C; Yang H; Xia T; Hu Z; Zhang Y
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29601481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil/water separation using elastic bio-aerogels derived from bagasse: Role of fabrication steps.
    Ye R; Long J; Peng D; Wang Y; Zhang G; Xiao G; Zheng Y; Xiao T; Wen Y; Li J; Li H
    J Hazard Mater; 2022 Sep; 438():129529. PubMed ID: 35999721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization.
    Liu X; Xu Y; Yu J; Li S; Wang J; Wang C; Chu F
    Int J Biol Macromol; 2014 Jun; 67():483-9. PubMed ID: 24742785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biobased Polymers via Radical Homopolymerization and Copolymerization of a Series of Terpenoid-Derived Conjugated Dienes with
    Nishida T; Satoh K; Kamigaito M
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitin nanowhisker aerogels.
    Heath L; Zhu L; Thielemans W
    ChemSusChem; 2013 Mar; 6(3):537-44. PubMed ID: 23335426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives.
    Simula A; Anastasaki A; Haddleton DM
    Macromol Rapid Commun; 2016 Feb; 37(4):356-61. PubMed ID: 26691684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(Urethane-Acrylate) Aerogels via Radical Polymerization of Dendritic Urethane-Acrylate Monomers.
    Papastergiou M; Kanellou A; Chriti D; Raptopoulos G; Paraskevopoulou P
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of monomer-free, highly crosslinked, water-compatible polymers.
    Dailing EA; Lewis SH; Barros MD; Stansbury JW
    J Dent Res; 2014 Dec; 93(12):1326-31. PubMed ID: 25248612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H
    Schimper CB; Pachschwoell PS; Hettegger H; Neouze MA; Nedelec JM; Wendland M; Rosenau T; Liebner F
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32272769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-modification of Cellulose Nanocrystal Aerogels with Thiol-Ene Click Chemistry.
    Aalbers GJW; Boott CE; D'Acierno F; Lewis L; Ho J; Michal CA; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2019 Jul; 20(7):2779-2785. PubMed ID: 31244013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of ABC Miktoarm Star Copolymers via Organocatalyzed Living Radical Polymerization.
    Ge Y; Chen C; Sim XM; Zheng J; Goto A
    Macromol Rapid Commun; 2020 Mar; 41(5):e1900623. PubMed ID: 32003518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.
    Pei X; Zhai W; Zheng W
    Langmuir; 2014 Nov; 30(44):13375-83. PubMed ID: 25340747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic Modification of Biopolymer Aerogels by Cold Plasma Coating.
    Schroeter B; Jung I; Bauer K; Gurikov P; Smirnova I
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization.
    Satoh K; Ozawa S; Mizutani M; Nagai K; Kamigaito M
    Nat Commun; 2010 Apr; 1():6. PubMed ID: 20975670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic Aerogels and Xerogels based on Trimethoxybenzene-Formaldehyde.
    Anklam T; Tannert R
    Macromol Rapid Commun; 2024 Sep; ():e2400691. PubMed ID: 39348160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.