These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38875796)

  • 1. Defect by design: Harnessing the "petal effect" for advanced hydrophobic surface applications.
    Mo M; Bai X; Liu Z; Huang Z; Xu M; Ma L; Lai W; Mo Q; Xie S; Li Y; Huang Y; Xiao N; Zheng Y
    J Colloid Interface Sci; 2024 Jun; 673():37-48. PubMed ID: 38875796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain.
    Park JK; Yang Z; Kim S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust adhesion of droplets via heterogeneous dynamic petal effects.
    Zheng Y; Zhang C; Wang J; Liu Y; Shen C; Yang J
    J Colloid Interface Sci; 2019 Dec; 557():737-745. PubMed ID: 31563606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces.
    Parra-Vicente S; Ibáñez-Ibáñez PF; Cabrerizo-Vílchez M; Sánchez-Almazo I; Rodríguez-Valverde MÁ; Ruiz-Cabello FJM
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113832. PubMed ID: 38447447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet Impact Dynamics on Biomimetic Replica of Yellow Rose Petals: Rebound to Micropinning Transition.
    Bandyopadhyay S; Shristi A; Kumawat V; Gope A; Mukhopadhyay A; Chakraborty S; Mukherjee R
    Langmuir; 2023 May; 39(17):6051-6060. PubMed ID: 37067511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals.
    Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H
    Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kapok petal: superhydrophobic surface induced by microscale trichomes.
    Chen J; Yu S; Fu T; Xu L; Tang Y; Li Z
    Bioinspir Biomim; 2022 Feb; 17(2):. PubMed ID: 34768250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography.
    Oopath SV; Baji A; Abtahi M
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer.
    Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.