These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 38876044)
1. Boosting antitumor efficacy of nanoparticles by modulating tumor mechanical microenvironment. Zhang X; Zhang X; Yong T; Gan L; Yang X EBioMedicine; 2024 Jul; 105():105200. PubMed ID: 38876044 [TBL] [Abstract][Full Text] [Related]
2. Stromal disruption facilitating invasion of a 'nano-arsenal' into the solid tumor. Fu Y; Saraswat AL; Monpara J; Patel K Drug Discov Today; 2022 Apr; 27(4):1132-1141. PubMed ID: 34823002 [TBL] [Abstract][Full Text] [Related]
3. Modulating tumor mechanics with nanomedicine for cancer therapy. Zhao Q; Chen J; Zhang Z; Xiao C; Zeng H; Xu C; Yang X; Li Z Biomater Sci; 2023 Jun; 11(13):4471-4489. PubMed ID: 37221958 [TBL] [Abstract][Full Text] [Related]
4. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400 [TBL] [Abstract][Full Text] [Related]
5. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Zhang Y; Ho SH; Li B; Nie G; Li S Med Res Rev; 2020 May; 40(3):1084-1102. PubMed ID: 31709590 [TBL] [Abstract][Full Text] [Related]
6. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Yunna C; Mengru H; Fengling W; Lei W; Weidong C Eur J Pharm Biopharm; 2021 Aug; 165():75-83. PubMed ID: 33991610 [TBL] [Abstract][Full Text] [Related]
7. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Danhier F J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992 [TBL] [Abstract][Full Text] [Related]
8. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Tian Y; Cheng T; Sun F; Zhou Y; Yuan C; Guo Z; Wang Z Adv Colloid Interface Sci; 2024 Apr; 326():103124. PubMed ID: 38461766 [TBL] [Abstract][Full Text] [Related]
9. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574 [TBL] [Abstract][Full Text] [Related]
10. Nanotherapy Targeting the Tumor Microenvironment. Gong BS; Wang R; Xu HX; Miao MY; Yao ZZ Curr Cancer Drug Targets; 2019; 19(7):525-533. PubMed ID: 30569855 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. Jia M; Zhang D; Zhang C; Li C J Nanobiotechnology; 2021 Nov; 19(1):384. PubMed ID: 34809634 [TBL] [Abstract][Full Text] [Related]
12. Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics. Chen Q; Liu G; Liu S; Su H; Wang Y; Li J; Luo C Trends Pharmacol Sci; 2018 Jan; 39(1):59-74. PubMed ID: 29153879 [TBL] [Abstract][Full Text] [Related]
13. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. Chen B; Dai W; Mei D; Liu T; Li S; He B; He B; Yuan L; Zhang H; Wang X; Zhang Q J Control Release; 2016 Nov; 241():68-80. PubMed ID: 27641831 [TBL] [Abstract][Full Text] [Related]
14. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Guo J; Zeng H; Chen Y Mol Pharm; 2020 Apr; 17(4):1028-1048. PubMed ID: 32150417 [TBL] [Abstract][Full Text] [Related]
15. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Kim J; Cho H; Lim DK; Joo MK; Kim K Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227 [TBL] [Abstract][Full Text] [Related]
16. Responsive and activable nanomedicines for remodeling the tumor microenvironment. Zhang Y; Han X; Nie G Nat Protoc; 2021 Jan; 16(1):405-430. PubMed ID: 33311713 [TBL] [Abstract][Full Text] [Related]
17. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Zhang B; Shi W; Jiang T; Wang L; Mei H; Lu H; Hu Y; Pang Z Oncotarget; 2016 Sep; 7(38):62607-62618. PubMed ID: 27566585 [TBL] [Abstract][Full Text] [Related]
19. DePEGylation strategies to increase cancer nanomedicine efficacy. Kong L; Campbell F; Kros A Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090 [TBL] [Abstract][Full Text] [Related]
20. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]