These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 38876044)

  • 21. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside.
    Stylianopoulos T; Munn LL; Jain RK
    Trends Cancer; 2018 Apr; 4(4):292-319. PubMed ID: 29606314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
    Chen S; Yang K; Tuguntaev RG; Mozhi A; Zhang J; Wang PC; Liang XJ
    Nanomedicine; 2016 Feb; 12(2):269-86. PubMed ID: 26707818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy.
    Mpekris F; Papageorgis P; Polydorou C; Voutouri C; Kalli M; Pirentis AP; Stylianopoulos T
    J Control Release; 2017 Sep; 261():105-112. PubMed ID: 28662901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site.
    Gouarderes S; Mingotaud AF; Vicendo P; Gibot L
    Expert Opin Drug Deliv; 2020 Dec; 17(12):1703-1726. PubMed ID: 32838565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner.
    Papageorgis P; Polydorou C; Mpekris F; Voutouri C; Agathokleous E; Kapnissi-Christodoulou CP; Stylianopoulos T
    Sci Rep; 2017 Apr; 7():46140. PubMed ID: 28393881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies of engineering nanomedicines for tumor retention.
    Qian X; Xu X; Wu Y; Wang J; Li J; Chen S; Wen J; Li Y; Zhang Z
    J Control Release; 2022 Jun; 346():193-211. PubMed ID: 35447297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges.
    Li W; Little N; Park J; Foster CA; Chen J; Lu J
    Mol Pharm; 2021 Aug; 18(8):2889-2905. PubMed ID: 34260250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug delivery: beyond active tumour targeting.
    Sagnella SM; McCarroll JA; Kavallaris M
    Nanomedicine; 2014 Aug; 10(6):1131-7. PubMed ID: 24823644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Research Progress on the Influence of Tumor Extracellular Matrix Mechanic Properties on Nanodrug Delivery].
    Zhao T; Wu H; Chen S; Wang J; Liu Y; Li T
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):13-18. PubMed ID: 38322528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles.
    Yhee JY; Jeon S; Yoon HY; Shim MK; Ko H; Min J; Na JH; Chang H; Han H; Kim JH; Suh M; Lee H; Park JH; Kim K; Kwon IC
    J Control Release; 2017 Dec; 267():223-231. PubMed ID: 28917532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing Tumor Penetration of Nanomedicines.
    Sun Q; Ojha T; Kiessling F; Lammers T; Shi Y
    Biomacromolecules; 2017 May; 18(5):1449-1459. PubMed ID: 28328191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor microenvironment and nanotherapeutics: intruding the tumor fort.
    Ravi Kiran AVVV; Kusuma Kumari G; Krishnamurthy PT; Khaydarov RR
    Biomater Sci; 2021 Nov; 9(23):7667-7704. PubMed ID: 34673853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance.
    Sa P; Sahoo SK; Dilnawaz F
    Curr Med Chem; 2023; 30(29):3335-3355. PubMed ID: 36154585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tumor Microenvironment-Enabled Nanotherapy.
    Wang L; Huo M; Chen Y; Shi J
    Adv Healthc Mater; 2018 Apr; 7(8):e1701156. PubMed ID: 29283221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anticancer nanomedicines harnessing tumor microenvironmental components.
    Li Y; Chen Z; Gu L; Duan Z; Pan D; Xu Z; Gong Q; Li Y; Zhu H; Luo K
    Expert Opin Drug Deliv; 2022 Apr; 19(4):337-354. PubMed ID: 35244503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.