These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 38876096)
1. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Shukla P; Bera AK; Ghosh A; Kiranmai G; Pati F Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38876096 [TBL] [Abstract][Full Text] [Related]
2. High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. Shukla P; Bera AK; Yeleswarapu S; Pati F Macromol Biosci; 2024 Aug; 24(8):e2400035. PubMed ID: 38685795 [TBL] [Abstract][Full Text] [Related]
3. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. de Villiers M; Kotzé AF; du Plessis LH Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39025118 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting platform development for high-throughput cancer organoid models construction and drug evaluation. Dai R; Chen W; Chen Y; Jin J; Zhang S; Zhang C; Liu J Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38810618 [TBL] [Abstract][Full Text] [Related]
5. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Horder H; Guaza Lasheras M; Grummel N; Nadernezhad A; Herbig J; Ergün S; Teßmar J; Groll J; Fabry B; Bauer-Kreisel P; Blunk T Cells; 2021 Apr; 10(4):. PubMed ID: 33916870 [TBL] [Abstract][Full Text] [Related]
6. Cancer cell migration depends on adjacent ASC and adipose spheroids in a 3D bioprinted breast cancer model. Horder H; Böhringer D; Endrizzi N; Hildebrand LS; Cianciosi A; Stecher S; Dusi F; Schweinitzer S; Watzling M; Groll J; Jüngst T; Teßmar J; Bauer-Kreisel P; Fabry B; Blunk T Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38934608 [TBL] [Abstract][Full Text] [Related]
7. 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. Sharifi M; Bai Q; Babadaei MMN; Chowdhury F; Hassan M; Taghizadeh A; Derakhshankhah H; Khan S; Hasan A; Falahati M J Control Release; 2021 May; 333():91-106. PubMed ID: 33774120 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting for drug discovery and development in pharmaceutics. Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712 [TBL] [Abstract][Full Text] [Related]
9. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Abaci A; Guvendiren M Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980 [TBL] [Abstract][Full Text] [Related]
10. 3D bioprinting for organ and organoid models and disease modeling. Juraski AC; Sharma S; Sparanese S; da Silva VA; Wong J; Laksman Z; Flannigan R; Rohani L; Willerth SM Expert Opin Drug Discov; 2023; 18(9):1043-1059. PubMed ID: 37431937 [TBL] [Abstract][Full Text] [Related]
11. 3D Bioprinted Tumor-Stroma Models of Triple-Negative Breast Cancer Stem Cells for Preclinical Targeted Therapy Evaluation. González-Callejo P; García-Astrain C; Herrero-Ruiz A; Henriksen-Lacey M; Seras-Franzoso J; Abasolo I; Liz-Marzán LM ACS Appl Mater Interfaces; 2024 May; 16(21):27151-27163. PubMed ID: 38764168 [TBL] [Abstract][Full Text] [Related]
12. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Ferreira LP; Gaspar VM; Mendes L; Duarte IF; Mano JF Biomaterials; 2021 Aug; 275():120983. PubMed ID: 34186236 [TBL] [Abstract][Full Text] [Related]
13. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink. Pati F; Cho DW Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957 [TBL] [Abstract][Full Text] [Related]
14. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Clark CC; Yoo KM; Sivakumar H; Strumpf K; Laxton AW; Tatter SB; Strowd RE; Skardal A Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36332268 [TBL] [Abstract][Full Text] [Related]
15. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. Kort-Mascort J; Bao G; Elkashty O; Flores-Torres S; Munguia-Lopez JG; Jiang T; Ehrlicher AJ; Mongeau L; Tran SD; Kinsella JM ACS Biomater Sci Eng; 2021 Nov; 7(11):5288-5300. PubMed ID: 34661396 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891 [TBL] [Abstract][Full Text] [Related]
17. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Gallegos-Martínez S; Choy-Buentello D; Pérez-Álvarez KA; Lara-Mayorga IM; Aceves-Colin AE; Zhang YS; Trujillo-de Santiago G; Álvarez MM Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38866003 [TBL] [Abstract][Full Text] [Related]
18. High throughput direct 3D bioprinting in multiwell plates. Hwang HH; You S; Ma X; Kwe L; Victorine G; Lawrence N; Wan X; Shen H; Zhu W; Chen S Biofabrication; 2021 Mar; 13(2):. PubMed ID: 32299077 [TBL] [Abstract][Full Text] [Related]
19. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
20. 3D bioprinting of tissue constructs employing dual crosslinking of decellularized extracellular matrix hydrogel. Yeleswarapu S; Dash A; Chameettachal S; Pati F Biomater Adv; 2023 Sep; 152():213494. PubMed ID: 37307772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]