These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38876411)
1. Environmental influence on the Atlantic salmon transcriptome and methylome during sea lice infestations. Valenzuela-Muñoz V; Wanamaker S; Núñez-Acuña G; Roberts S; Garcia A; Valdés JA; Valenzuela-Miranda D; Gallardo-Escárate C Fish Shellfish Immunol; 2024 Aug; 151():109692. PubMed ID: 38876411 [TBL] [Abstract][Full Text] [Related]
2. Comparative immunity of Salmo salar and Oncorhynchus kisutch during infestation with the sea louse Caligus rogercresseyi: An enrichment transcriptome analysis. Valenzuela-Muñoz V; Boltaña S; Gallardo-Escárate C Fish Shellfish Immunol; 2016 Dec; 59():276-287. PubMed ID: 27815198 [TBL] [Abstract][Full Text] [Related]
3. Iron metabolism modulation in Atlantic salmon infested with the sea lice Lepeophtheirus salmonis and Caligus rogercresseyi: A matter of nutritional immunity? Valenzuela-Muñoz V; Gallardo-Escárate C Fish Shellfish Immunol; 2017 Jan; 60():97-102. PubMed ID: 27888129 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome immunomodulation of in-feed additives in Atlantic salmon Salmo salar infested with sea lice Caligus rogercresseyi. Núñez-Acuña G; Gonçalves AT; Valenzuela-Muñoz V; Pino-Marambio J; Wadsworth S; Gallardo-Escárate C Fish Shellfish Immunol; 2015 Nov; 47(1):450-60. PubMed ID: 26363235 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome and morphological analysis in Caligus rogercresseyi uncover the effects of Atlantic salmon vaccination with IPath®. Valenzuela-Muñoz V; Benavente BP; Casuso A; Leal Y; Valenzuela-Miranda D; Núñez-Acuña G; Sáez-Vera C; Gallardo-Escárate C Fish Shellfish Immunol; 2021 Oct; 117():169-178. PubMed ID: 34389379 [TBL] [Abstract][Full Text] [Related]
6. A comparative analysis of alternative splicing patterns in Atlantic salmon (Salmo salar) in response to Moritella viscosa and sea lice (Lepeophtheirus salmonis) infection. Gao S; Tan S; Purcell SL; Whyte SK; Parrish K; Zhong L; Zheng S; Zhang Y; Zhu R; Jahangiri L; Li R; Fast MD; Cai W Fish Shellfish Immunol; 2024 Jun; 149():109606. PubMed ID: 38705547 [TBL] [Abstract][Full Text] [Related]
7. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation. Valenzuela-Muñoz V; Boltaña S; Gallardo-Escárate C J Fish Dis; 2017 Sep; 40(9):1169-1184. PubMed ID: 28075024 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation. Valenzuela-Muñoz V; Valenzuela-Miranda D; Gallardo-Escárate C Dev Comp Immunol; 2018 Oct; 87():36-50. PubMed ID: 29803715 [TBL] [Abstract][Full Text] [Related]
9. Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon. Bravo S; Leiva F; Moya J; Guzman O; Vidal R Mar Biotechnol (NY); 2023 Apr; 25(2):223-234. PubMed ID: 36629943 [TBL] [Abstract][Full Text] [Related]
10. Density-dependent effects of Caligus rogercresseyi infestation on the immune responses of Salmo salar. Boltaña S; Sanchez M; Valenzuela V; Gallardo-Escárate C Fish Shellfish Immunol; 2016 Dec; 59():365-374. PubMed ID: 27818345 [TBL] [Abstract][Full Text] [Related]
11. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility. Holm H; Santi N; Kjøglum S; Perisic N; Skugor S; Evensen Ø Fish Shellfish Immunol; 2015 Feb; 42(2):384-94. PubMed ID: 25449368 [TBL] [Abstract][Full Text] [Related]
12. Modulation of Atlantic salmon miRNome response to sea louse infestation. Valenzuela-Muñoz V; Novoa B; Figueras A; Gallardo-Escárate C Dev Comp Immunol; 2017 Nov; 76():380-391. PubMed ID: 28711463 [TBL] [Abstract][Full Text] [Related]
13. Genetic homogeneity coupled with morphometric variability suggests high phenotypic plasticity in the sea louse Caligus rogercresseyi (Boxshall and Bravo, 2000), infecting farmed salmon (Salmo salar) along a wide latitudinal range in southern Chile. González MT; Leiva NV; Sepúlveda F; Asencio G; Baeza JA J Fish Dis; 2021 May; 44(5):633-638. PubMed ID: 33484476 [TBL] [Abstract][Full Text] [Related]
14. Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness. Braden LM; Sutherland BJ; Koop BF; Jones SR BMC Genomics; 2017 Jan; 18(1):110. PubMed ID: 28137252 [TBL] [Abstract][Full Text] [Related]
15. Tool for predicting Caligus rogercresseyi abundance on salt water salmon farms in Chile. St-Hilaire S; Patanasatienkul T; Yu J; Kristoffersen AB; Stryhn H; Revie CW; Ibarra R; Tello A; McEwan G Prev Vet Med; 2018 Oct; 158():122-128. PubMed ID: 30220385 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon Oncorhynchus kisutch to experimental infection with sea lice Lepeophtheirus salmonis. Fast MD; Ross NW; Mustafa A; Sims DE; Johnson SC; Conboy GA; Speare DJ; Johnson G; Burka JF Dis Aquat Organ; 2002 Nov; 52(1):57-68. PubMed ID: 12517006 [TBL] [Abstract][Full Text] [Related]
17. Transcription expression of immune-related genes from Caligus rogercresseyi evidences host-dependent patterns on Atlantic and coho salmon. Vera-Bizama F; Valenzuela-Muñoz V; Gonçalves AT; Marambio JP; Hawes C; Wadsworth S; Gallardo-Escárate C Fish Shellfish Immunol; 2015 Dec; 47(2):725-31. PubMed ID: 26492996 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of Caligus rogercresseyi (Boxshall & Bravo, 2000) in farmed Atlantic salmon (Salmo salar) in southern Chile: Are we controlling sea lice? Mancilla-Schulz J; Marín SL; Molinet C J Fish Dis; 2019 Mar; 42(3):357-369. PubMed ID: 30644118 [TBL] [Abstract][Full Text] [Related]
19. Sexual maturation and administration of 17β-estradiol and testosterone induce complex gene expression changes in skin and increase resistance of Atlantic salmon to ectoparasite salmon louse. Krasnov A; Wesmajervi Breiland MS; Hatlen B; Afanasyev S; Skugor S Gen Comp Endocrinol; 2015 Feb; 212():34-43. PubMed ID: 25599658 [TBL] [Abstract][Full Text] [Related]
20. Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. Tadiso TM; Krasnov A; Skugor S; Afanasyev S; Hordvik I; Nilsen F BMC Genomics; 2011 Mar; 12():141. PubMed ID: 21385383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]