BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38876836)

  • 1. The role of vaccines in reducing antimicrobial resistance: A review of potential impact of vaccines on AMR and insights across 16 vaccines and pathogens.
    Hasso-Agopsowicz M; Sparrow E; Cameron AM; Sati H; Srikantiah P; Gottlieb S; Bentsi-Enchill A; Le Doare K; Hamel M; Giersing BK; Hausdorff WP
    Vaccine; 2024 Jun; ():. PubMed ID: 38876836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global and regional burden of attributable and associated bacterial antimicrobial resistance avertable by vaccination: modelling study.
    Kim C; Holm M; Frost I; Hasso-Agopsowicz M; Abbas K
    BMJ Glob Health; 2023 Jul; 8(7):. PubMed ID: 37414432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.
    Antimicrobial Resistance Collaborators
    Lancet; 2022 Feb; 399(10325):629-655. PubMed ID: 35065702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine impact on antimicrobial resistance to inform Gavi, the Vaccine Alliance's 2018 Vaccine Investment Strategy: report from an expert survey.
    Malarski M; Hasso-Agopsowicz M; Soble A; Mok W; Mathewson S; Vekemans J
    F1000Res; 2019; 8():1685. PubMed ID: 31737260
    [No Abstract]   [Full Text] [Related]  

  • 5. The approach of World Health Organization to articulate the role and assure impact of vaccines against antimicrobial resistance.
    Frost I; Balachandran A; Paulin-Deschenaux S; Sati H; Hasso-Agopsowicz M
    Hum Vaccin Immunother; 2022 Nov; 18(6):2145069. PubMed ID: 36420615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of vaccines on antimicrobial resistance.
    Buchy P; Ascioglu S; Buisson Y; Datta S; Nissen M; Tambyah PA; Vong S
    Int J Infect Dis; 2020 Jan; 90():188-196. PubMed ID: 31622674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of human vaccines on bacterial antimicrobial resistance. A review.
    Jansen KU; Gruber WC; Simon R; Wassil J; Anderson AS
    Environ Chem Lett; 2021; 19(6):4031-4062. PubMed ID: 34602924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vaccines in preventing bacterial antimicrobial resistance.
    Jansen KU; Knirsch C; Anderson AS
    Nat Med; 2018 Jan; 24(1):10-19. PubMed ID: 29315295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of vaccines in fighting antimicrobial resistance (AMR).
    Jansen KU; Anderson AS
    Hum Vaccin Immunother; 2018; 14(9):2142-2149. PubMed ID: 29787323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global geographic trends in antimicrobial resistance: the role of international travel.
    Frost I; Van Boeckel TP; Pires J; Craig J; Laxminarayan R
    J Travel Med; 2019 Dec; 26(8):. PubMed ID: 31115466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives.
    Costanzo V; Roviello GN
    Vaccines (Basel); 2023 Feb; 11(2):. PubMed ID: 36851210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crisis averted: a world united against the menace of multiple drug-resistant superbugs -pioneering anti-AMR vaccines, RNA interference, nanomedicine, CRISPR-based antimicrobials, bacteriophage therapies, and clinical artificial intelligence strategies to safeguard global antimicrobial arsenal.
    Saeed U; Insaf RA; Piracha ZZ; Tariq MN; Sohail A; Abbasi UA; Fida Rana MS; Gilani SS; Noor S; Noor E; Waheed Y; Wahid M; Najmi MH; Fazal I
    Front Microbiol; 2023; 14():1270018. PubMed ID: 38098671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Economic and cost-effectiveness aspects of vaccines in combating antibiotic resistance.
    Yemeke T; Chen HH; Ozawa S
    Hum Vaccin Immunother; 2023 Dec; 19(1):2215149. PubMed ID: 37248971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vaccination to Reduce Antimicrobial Resistance Burden-Data Gaps and Future Research.
    Tadesse BT; Keddy KH; Rickett NY; Zhusupbekova A; Poudyal N; Lawley T; Osman M; Dougan G; Kim JH; Lee JS; Jeon HJ; Marks F
    Clin Infect Dis; 2023 Dec; 77(Suppl 7):S597-S607. PubMed ID: 38118013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunization as a tool to combat antimicrobial resistance.
    Spika J; Rud EW
    Can Commun Dis Rep; 2015 Nov; 41(Suppl 5):7-10. PubMed ID: 29769969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Protection to Prevention: Redefining Vaccines in the Context of Antimicrobial Resistance.
    Sallam M; Snygg J; Allam D; Kassem R
    Cureus; 2024 May; 16(5):e60551. PubMed ID: 38887339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Value of pneumococcal vaccination in controlling the development of antimicrobial resistance (AMR): Case study using DREAMR in Ethiopia.
    Ozawa S; Chen HH; Rao GG; Eguale T; Stringer A
    Vaccine; 2021 Oct; 39(45):6700-6711. PubMed ID: 34538697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis.
    Antimicrobial Resistance Collaborators
    Lancet Reg Health Am; 2023 Sep; 25():100561. PubMed ID: 37727594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaccines Against Antimicrobial Resistance.
    Rosini R; Nicchi S; Pizza M; Rappuoli R
    Front Immunol; 2020; 11():1048. PubMed ID: 32582169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000
    Carey ME; Dyson ZA; Ingle DJ; Amir A; Aworh MK; Chattaway MA; Chew KL; Crump JA; Feasey NA; Howden BP; Keddy KH; Maes M; Parry CM; Van Puyvelde S; Webb HE; Afolayan AO; Alexander AP; Anandan S; Andrews JR; Ashton PM; Basnyat B; Bavdekar A; Bogoch II; Clemens JD; da Silva KE; De A; de Ligt J; Diaz Guevara PL; Dolecek C; Dutta S; Ehlers MM; Francois Watkins L; Garrett DO; Godbole G; Gordon MA; Greenhill AR; Griffin C; Gupta M; Hendriksen RS; Heyderman RS; Hooda Y; Hormazabal JC; Ikhimiukor OO; Iqbal J; Jacob JJ; Jenkins C; Jinka DR; John J; Kang G; Kanteh A; Kapil A; Karkey A; Kariuki S; Kingsley RA; Koshy RM; Lauer AC; Levine MM; Lingegowda RK; Luby SP; Mackenzie GA; Mashe T; Msefula C; Mutreja A; Nagaraj G; Nagaraj S; Nair S; Naseri TK; Nimarota-Brown S; Njamkepo E; Okeke IN; Perumal SPB; Pollard AJ; Pragasam AK; Qadri F; Qamar FN; Rahman SIA; Rambocus SD; Rasko DA; Ray P; Robins-Browne R; Rongsen-Chandola T; Rutanga JP; Saha SK; Saha S; Saigal K; Sajib MSI; Seidman JC; Shakya J; Shamanna V; Shastri J; Shrestha R; Sia S; Sikorski MJ; Singh A; Smith AM; Tagg KA; Tamrakar D; Tanmoy AM; Thomas M; Thomas MS; Thomsen R; Thomson NR; Tupua S; Vaidya K; Valcanis M; Veeraraghavan B; Weill FX; Wright J; Dougan G; Argimón S; Keane JA; Aanensen DM; Baker S; Holt KE;
    Elife; 2023 Sep; 12():. PubMed ID: 37697804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.