These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38876997)

  • 1. Learning nonlinear operators in latent spaces for real-time predictions of complex dynamics in physical systems.
    Kontolati K; Goswami S; Em Karniadakis G; Shields MD
    Nat Commun; 2024 Jun; 15(1):5101. PubMed ID: 38876997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basis operator network: A neural network-based model for learning nonlinear operators via neural basis.
    Hua N; Lu W
    Neural Netw; 2023 Jul; 164():21-37. PubMed ID: 37146447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks.
    Regazzoni F; Pagani S; Salvador M; Dede' L; Quarteroni A
    Nat Commun; 2024 Feb; 15(1):1834. PubMed ID: 38418469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems.
    Yin M; Zhang E; Yu Y; Karniadakis GE
    Comput Methods Appl Mech Eng; 2022 Dec; 402():. PubMed ID: 37384215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operator compression with deep neural networks.
    Kröpfl F; Maier R; Peterseim D
    Adv Contin Discret Model; 2022; 2022(1):29. PubMed ID: 35531267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-accelerated computational fluid dynamics.
    Kochkov D; Smith JA; Alieva A; Wang Q; Brenner MP; Hoyer S
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34006645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximation rates of DeepONets for learning operators arising from advection-diffusion equations.
    Deng B; Shin Y; Lu L; Zhang Z; Karniadakis GE
    Neural Netw; 2022 Sep; 153():411-426. PubMed ID: 35803112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
    Zhang L; You H; Gao T; Yu M; Lee CH; Yu Y
    Comput Methods Appl Mech Eng; 2023 Dec; 417(Pt B):. PubMed ID: 38292246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training a deep operator network as a surrogate solver for two-dimensional parabolic-equation models.
    Xu L; Zhang H; Zhang M
    J Acoust Soc Am; 2023 Nov; 154(5):3276-3284. PubMed ID: 37975734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Hybrid Deep Learning Method for Predicting the Flow Fields of Biomimetic Flapping Wings.
    Hu F; Tay W; Zhou Y; Khoo B
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound propagation in realistic interactive 3D scenes with parameterized sources using deep neural operators.
    Borrel-Jensen N; Goswami S; Engsig-Karup AP; Karniadakis GE; Jeong CH
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2312159120. PubMed ID: 38175862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model.
    Lee J; Kim T; Park J; Park J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders.
    Abdedou A; Soulaimani A
    Adv Model Simul Eng Sci; 2023; 10(1):7. PubMed ID: 37215229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A random batch method for efficient ensemble forecasts of multiscale turbulent systems.
    Qi D; Liu JG
    Chaos; 2023 Feb; 33(2):023113. PubMed ID: 36859236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based surrogate models for parametrized PDEs: Handling geometric variability through graph neural networks.
    Franco NR; Fresca S; Tombari F; Manzoni A
    Chaos; 2023 Dec; 33(12):. PubMed ID: 38085228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On random fixed point theorems with applications to integral equations.
    Eke KS; Akewe H; Bishop SA
    Heliyon; 2019 May; 5(5):e01641. PubMed ID: 31193544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering.
    Ahmed N; Ali M; Rafiq M; Khan I; Nisar KS; Rehman MA; Ahmad MO
    Comput Methods Programs Biomed; 2020 Jul; 190():105350. PubMed ID: 32078958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLAPP: Subgraph-level attention-based performance prediction for deep learning models.
    Wang Z; Yang P; Hu L; Zhang B; Lin C; Lv W; Wang Q
    Neural Netw; 2024 Feb; 170():285-297. PubMed ID: 38000312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for Koopman Operator Optimal Control.
    Al-Gabalawy M
    ISA Trans; 2021 Jan; ():. PubMed ID: 33431116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.