These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38877097)

  • 1. Development of a real-time cattle lameness detection system using a single side-view camera.
    Myint BB; Onizuka T; Tin P; Aikawa M; Kobayashi I; Zin TT
    Sci Rep; 2024 Jun; 14(1):13734. PubMed ID: 38877097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning pose estimation for multi-cattle lameness detection.
    Barney S; Dlay S; Crowe A; Kyriazakis I; Leach M
    Sci Rep; 2023 Mar; 13(1):4499. PubMed ID: 36934125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lameness detection in dairy cattle: single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing.
    Van Hertem T; Bahr C; Schlageter Tello A; Viazzi S; Steensels M; Romanini CE; Lokhorst C; Maltz E; Halachmi I; Berckmans D
    Animal; 2016 Sep; 10(9):1525-32. PubMed ID: 26234298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase.
    Kang X; Zhang XD; Liu G
    J Dairy Sci; 2020 Nov; 103(11):10628-10638. PubMed ID: 32952030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revolutionizing Cow Welfare Monitoring: A Novel Top-View Perspective with Depth Camera-Based Lameness Classification.
    Tun SC; Onizuka T; Tin P; Aikawa M; Kobayashi I; Zin TT
    J Imaging; 2024 Mar; 10(3):. PubMed ID: 38535147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cow key point detection in indoor housing conditions with a deep learning model.
    Taghavi M; Russello H; Ouweltjes W; Kamphuis C; Adriaens I
    J Dairy Sci; 2024 Apr; 107(4):2374-2389. PubMed ID: 37863288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning approaches for the prediction of lameness in dairy cows.
    Shahinfar S; Khansefid M; Haile-Mariam M; Pryce JE
    Animal; 2021 Nov; 15(11):100391. PubMed ID: 34800868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of lameness detection using radar sensing in ruminants.
    Busin V; Viora L; King G; Tomlinson M; LeKernec J; Jonsson N; Fioranelli F
    Vet Rec; 2019 Nov; 185(18):572. PubMed ID: 31554712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Sensor Data to Detect Lameness and Mastitis Treatment Events in Dairy Cows: A Comparison of Classification Models.
    Post C; Rietz C; Büscher W; Müller U
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting lameness in dairy cattle using untargeted liquid chromatography-mass spectrometry-based metabolomics and machine learning.
    Randall LV; Kim DH; Abdelrazig SMA; Bollard NJ; Hemingway-Arnold H; Hyde RM; Thompson JS; Green MJ
    J Dairy Sci; 2023 Oct; 106(10):7033-7042. PubMed ID: 37500436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance.
    Piette D; Norton T; Exadaktylos V; Berckmans D
    Animal; 2020 Feb; 14(2):409-417. PubMed ID: 31354111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explainable AI based automated segmentation and multi-stage classification of gastroesophageal reflux using machine learning techniques.
    Maity R; Raja Sankari VM; U S; N A R; Salvador AL
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38901416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review: Development of Computer Vision-Based Lameness Detection for Dairy Cows and Discussion of the Practical Applications.
    Kang X; Zhang XD; Liu G
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-farm detection of claw lesions in dairy cows based on acoustic analyses and machine learning.
    Volkmann N; Kulig B; Hoppe S; Stracke J; Hensel O; Kemper N
    J Dairy Sci; 2021 May; 104(5):5921-5931. PubMed ID: 33663849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated dairy cattle lameness detection utilizing the power of artificial intelligence; current status quo and future research opportunities.
    Siachos N; Neary JM; Smith RF; Oikonomou G
    Vet J; 2024 Apr; 304():106091. PubMed ID: 38431128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing State-of-the-Art Deep Learning Algorithms for the Automated Detection and Tracking of Black Cattle.
    Myat Noe S; Zin TT; Tin P; Kobayashi I
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning pose detection model for sow locomotion.
    de Paula TMCG; de Sousa RV; Sarmiento MP; Kramer T; de Souza Sardinha EJ; Sabei L; Machado JS; Vilioti M; Zanella AJ
    Sci Rep; 2024 Jul; 14(1):16401. PubMed ID: 39013897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic lameness detection in cattle.
    Alsaaod M; Fadul M; Steiner A
    Vet J; 2019 Apr; 246():35-44. PubMed ID: 30902187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification accuracy of machine learning algorithms for Chinese local cattle breeds using genomic markers.
    Liang H; Wang X; Si JF; Zhang Y
    Yi Chuan; 2024 Jul; 46(7):530-539. PubMed ID: 39016086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of body condition in Jersey dairy cattle from 3D-images using machine learning techniques.
    Stephansen RB; Manzanilla-Pech CIV; Gebreyesus G; Sahana G; Lassen J
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37943499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.