BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38877151)

  • 1. Effects of expanded graphite's structural and elemental characteristics on its oil and heavy metal sorption properties.
    Coetzee D; Rojviroon T; Niamlang S; Militký J; Wiener J; Večerník J; Melicheríková J; Müllerová J
    Sci Rep; 2024 Jun; 14(1):13716. PubMed ID: 38877151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of stage, intercalant species and expansion technique on exfoliation of graphite intercalation compound into graphene sheets.
    Geng Y; Zheng Q; Kim JK
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1084-91. PubMed ID: 21456143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of thermally expanded graphite in oil sorption applications.
    Elbidi M; Mohd Salleh MA; Rashid SA; Mukhtar Gunam Resul MF
    RSC Adv; 2024 May; 14(23):16466-16485. PubMed ID: 38774609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite.
    Goudarzi R; Hashemi Motlagh G
    Heliyon; 2019 Oct; 5(10):e02595. PubMed ID: 31646209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation.
    Hou S; Zhu T; Shen W; Kang F; Inagaki M; Huang ZH
    J Hazard Mater; 2022 Feb; 424(Pt D):127724. PubMed ID: 34799174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Preparation and Characterization of MnFe
    Tuan Nguyen HD; Nguyen HT; Nguyen TT; Le Thi AK; Nguyen TD; Phuong Bui QT; Bach LG
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31200537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H
    Xu C; Jiao C; Yao R; Lin A; Jiao W
    Environ Pollut; 2018 Feb; 233():194-200. PubMed ID: 29078123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption kinetics of heavy oil into porous carbons.
    Nishi Y; Iwashita N; Sawada Y; Inagaki M
    Water Res; 2002 Dec; 36(20):5029-36. PubMed ID: 12448551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Multiple Methods for Recycling of Kish Graphite from Steelmaking Slags and Oil Sorption Performance of Kish-Based Expanded Graphite.
    Li J; Liu R; Ma L; Wei L; Cao L; Shen W; Kang F; Huang ZH
    ACS Omega; 2021 Apr; 6(14):9868-9875. PubMed ID: 33869967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil spill cleanup using graphene.
    Iqbal MZ; Abdala AA
    Environ Sci Pollut Res Int; 2013 May; 20(5):3271-9. PubMed ID: 23093418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions.
    Shiu RF; Lee CL; Hsieh PY; Chen CS; Kang YY; Chin WC; Tai NH
    Chemosphere; 2018 Sep; 207():110-117. PubMed ID: 29793022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent trends in the applications of thermally expanded graphite for energy storage and sensors - a review.
    Murugan P; Nagarajan RD; Shetty BH; Govindasamy M; Sundramoorthy AK
    Nanoscale Adv; 2021 Nov; 3(22):6294-6309. PubMed ID: 36133482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite.
    Liu X; Zheng M; Xiao K; Xiao Y; He C; Dong H; Lei B; Liu Y
    Nanoscale; 2014 May; 6(9):4598-603. PubMed ID: 24632864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation.
    Stor M; Czelej K; Krasiński A; Gradoń L
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational DFT study of magnetite/graphene oxide nanoadsorbent: Interfacial chemical behavior and remediation performance of heavy metal hydrates from aqueous system.
    El-Fawal EM; Saad L; Moustafa YM
    Water Environ Res; 2020 Sep; 92(9):1293-1305. PubMed ID: 32159903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxide of porous graphitized carbon as recoverable functional adsorbent that removes toxic metals from water.
    Wang Y; Cai M; Chen T; Pan F; Wu F; You Z; Li J
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):983-993. PubMed ID: 34487945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Preparation and Characterization of Expanded Graphite via Microwave Irradiation and Conventional Heating for the Purification of Oil Contaminated Water.
    Pham TV; Nguyen TT; Nguyen DT; Thuan TV; Bui PQT; Viet VND; Bach LG
    J Nanosci Nanotechnol; 2019 Feb; 19(2):1122-1125. PubMed ID: 30360214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation on a thermochemical seasonal sorption energy storage battery utilizing MgSO
    Salama MM; Mohamed SA; Attalla M; Shmroukh AN
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98502-98525. PubMed ID: 37608179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.