BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38877615)

  • 1. Surface-associated residues in subtilisins contribute to poly-L-lactic acid depolymerization via enzyme adsorption.
    Cannon JA; Zhou Y; Qualey LT; Reynolds TB
    Microb Biotechnol; 2024 Jun; 17(6):e14473. PubMed ID: 38877615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Mutations Create
    Cannon JA; Reynolds TB
    Biomacromolecules; 2023 Mar; 24(3):1141-1154. PubMed ID: 36780360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS.
    Yamagata Y; Isshiki K; Ichishima E
    Enzyme Microb Technol; 1995 Jul; 17(7):653-63. PubMed ID: 7605625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved autoprocessing efficiency of mutant subtilisins E with altered specificity by engineering of the pro-region.
    Takahashi M; Hasuura Y; Nakamori S; Takagi H
    J Biochem; 2001 Jul; 130(1):99-106. PubMed ID: 11432785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800.
    Nguyen TT; Quyen TD; Le HT
    Microb Cell Fact; 2013 Sep; 12():79. PubMed ID: 24021098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto.
    Yongjun C; Wei B; Shujun J; Meizhi W; Yan J; Yan Y; Zhongliang Z; Goulin Z
    FEMS Microbiol Lett; 2011 Dec; 325(2):155-61. PubMed ID: 22029857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of a fibrin-degrading enzyme from Bacillus subtilis K2 isolated from the Indonesian soybean-based fermented food moromi.
    Syahbanu F; Giriwono PE; Tjandrawinata RR; Suhartono MT
    Mol Biol Rep; 2020 Nov; 47(11):8553-8563. PubMed ID: 33111172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide.
    You L; Arnold FH
    Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis.
    Takagi H; Arafuka S; Inouye M; Yamasaki M
    J Biochem; 1992 May; 111(5):584-8. PubMed ID: 1639753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of a fibrinolytic enzyme composed of multiple fragments.
    Ren Y; Pan X; Lyu Q; Liu W
    Acta Biochim Biophys Sin (Shanghai); 2018 Feb; 50(2):227-229. PubMed ID: 29309704
    [No Abstract]   [Full Text] [Related]  

  • 14. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis.
    Wells JA; Ferrari E; Henner DJ; Estell DA; Chen EY
    Nucleic Acids Res; 1983 Nov; 11(22):7911-25. PubMed ID: 6316278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering subtilisin E for enhanced stability and activity in polar organic solvents.
    Takagi H; Hirai K; Maeda Y; Matsuzawa H; Nakamori S
    J Biochem; 2000 Apr; 127(4):617-25. PubMed ID: 10739954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins.
    Mulder FA; Schipper D; Bott R; Boelens R
    J Mol Biol; 1999 Sep; 292(1):111-23. PubMed ID: 10493861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tryptophan residues in the autoprocessing of prosubtilisin E.
    Sone M; Falzon L; Inouye M
    Biochim Biophys Acta; 2005 May; 1749(1):15-22. PubMed ID: 15848132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Bacillus lentus subtilisins having altered flexibility.
    Graycar T; Knapp M; Ganshaw G; Dauberman J; Bott R
    J Mol Biol; 1999 Sep; 292(1):97-109. PubMed ID: 10493860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct comparison of the subtilisin-like intracellular protease of Bacillus licheniformis with the homologous enzymes of Bacillus subtilis.
    Strongin AY; Abramov ZT; Yaroslavtseva NG; Baratova LA; Shaginyan KA; Belyanova LP; Stepanov VM
    J Bacteriol; 1979 Feb; 137(2):1017-9. PubMed ID: 106040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of subtilisin ALP I from alkalophilic Bacillus sp. NKS-21.
    Yamagata Y; Sato T; Hanzawa S; Ichishima E
    Curr Microbiol; 1995 Apr; 30(4):201-9. PubMed ID: 7765893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.