BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38877987)

  • 1. Customizable Fabrication of Photothermal Microneedles with Plasmonic Nanoparticles Using Low-Cost Stereolithography Three-Dimensional Printing.
    Ziesmer J; Sondén I; Venckute Larsson J; Merkl P; Sotiriou GA
    ACS Appl Bio Mater; 2024 Jun; ():. PubMed ID: 38877987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Near-IR Photothermal Microneedles with Flame-Made Plasmonic Nanoaggregates for Reduced Intradermal Nanoparticle Deposition.
    Ziesmer J; Sondén I; Thersleff T; Sotiriou GA
    Adv Mater Interfaces; 2022 Dec; 9(34):. PubMed ID: 37720386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant
    Ziesmer J; Larsson JV; Sotiriou GA
    Chem Eng J; 2023 Apr; 462():142127. PubMed ID: 37719675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing.
    Krieger KJ; Bertollo N; Dangol M; Sheridan JT; Lowery MM; O'Cearbhaill ED
    Microsyst Nanoeng; 2019; 5():42. PubMed ID: 31645996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of stereolithography 3D printing of microneedle micro-molds for ocular drug delivery.
    Fitaihi R; Abukhamees S; Chung SH; Craig DQM
    Int J Pharm; 2024 Jun; 658():124195. PubMed ID: 38703935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Printing Parameters for Digital Light Processing 3D Printing of Hollow Microneedle Arrays.
    Mathew E; Pitzanti G; Gomes Dos Santos AL; Lamprou DA
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
    Wu L; Park J; Kamaki Y; Kim B
    Microsyst Nanoeng; 2021; 7():58. PubMed ID: 34567770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications.
    Loh JM; Lim YJL; Tay JT; Cheng HM; Tey HL; Liang K
    Bioact Mater; 2024 Feb; 32():222-241. PubMed ID: 37869723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabricating High-Resolution and High-Dimensional Microneedle Mold through the Resolution Improvement of Stereolithography 3D Printing.
    Choo S; Jin S; Jung J
    Pharmaceutics; 2022 Mar; 14(4):. PubMed ID: 35456599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Coupling in Silver Nanoparticle Aggregates and Their Polymer Composite Films for Near
    Merkl P; Zhou S; Zaganiaris A; Shahata M; Eleftheraki A; Thersleff T; Sotiriou GA
    ACS Appl Nano Mater; 2021 May; 4(5):5330-5339. PubMed ID: 34085032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of 3D Printability and Biocompatibility of Microfluidic Resin for Fabrication of Solid Microneedles.
    Tabriz AG; Viegas B; Okereke M; Uddin MJ; Lopez EA; Zand N; Ranatunga M; Getti G; Douroumis D
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of 3D Printing Technology in Microengineering of Microneedles.
    Detamornrat U; McAlister E; Hutton ARJ; Larrañeta E; Donnelly RF
    Small; 2022 May; 18(18):e2106392. PubMed ID: 35362226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of 3D Printing Tilt Angle on the Penetration of 3D-Printed Microneedle Arrays.
    Razzaghi M; Akbari M
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications.
    Aldawood FK; Parupelli SK; Andar A; Desai S
    Pharmaceutics; 2024 Feb; 16(2):. PubMed ID: 38399291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed microneedles for transdermal drug delivery: A brief review of two decades.
    Elahpour N; Pahlevanzadeh F; Kharaziha M; Bakhsheshi-Rad HR; Ramakrishna S; Berto F
    Int J Pharm; 2021 Mar; 597():120301. PubMed ID: 33540018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
    Mizuno Y; Takasawa K; Hanada T; Nakamura K; Yamada K; Tsubaki H; Hara M; Tashiro Y; Matsuo M; Ito T; Hikima T
    Biomed Microdevices; 2021 Jul; 23(3):38. PubMed ID: 34287717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimisation of Design and Manufacturing Parameters of 3D Printed Solid Microneedles for Improved Strength, Sharpness, and Drug Delivery.
    Economidou SN; Pissinato Pere CP; Okereke M; Douroumis D
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33499301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization.
    Baykara D; Bedir T; Ilhan E; Mutlu ME; Gunduz O; Narayan R; Ustundag CB
    Front Bioeng Biotechnol; 2023; 11():1157541. PubMed ID: 37251572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery.
    Economidou SN; Pere CPP; Reid A; Uddin MJ; Windmill JFC; Lamprou DA; Douroumis D
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():743-755. PubMed ID: 31147046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.