BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38878285)

  • 1. Protocol for comparing ribosomal levels in single bacterial cells at different growth stages using rRNA-FISH.
    Ciolli Mattioli C; Avraham R
    STAR Protoc; 2024 Jun; 5(3):103137. PubMed ID: 38878285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FISH-Flow to quantify nascent and mature ribosomal RNA in mouse and human cells.
    Antony C; Somers P; Gray EM; Pimkin M; Paralkar VR
    STAR Protoc; 2023 Sep; 4(3):102463. PubMed ID: 37481729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of virus-infected cells using RNA FISH-Flow.
    Warren CJ; Barbachano-Guerrero A; Huey D; Yang Q; Worden-Sapper ER; Kuhn JH; Sawyer SL
    STAR Protoc; 2023 May; 4(2):102291. PubMed ID: 37209094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Introduction to Fluorescence in situ Hybridization in Microorganisms.
    Almeida C; Azevedo NF
    Methods Mol Biol; 2021; 2246():1-15. PubMed ID: 33576979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques.
    Cottignies-Calamarte A; He F; Zhu A; Real F; Bomsel M
    STAR Protoc; 2023 Dec; 4(4):102593. PubMed ID: 37738115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced fluorescent imaging of proteins in live yeast cells using fluorescently labeled scFv.
    Tsirkas I; Zur T; Dovrat D; Paleiov Z; Ravkaie L; Aharoni A
    STAR Protoc; 2023 Jun; 4(2):102299. PubMed ID: 37270779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Sensitive Quantification of Anammox Bacteria by Flow Cytometric Analysis Based on Catalyzed Reporter Deposition Fluorescence In Situ Hybridization.
    Zhu Y; Wang Y; Yan Y; Xue H
    Environ Sci Technol; 2019 Jun; 53(12):6895-6905. PubMed ID: 31120737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry.
    Tang YZ; Gin KY; Lim TH
    Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeling and analyzing lipid droplets in mouse muscle stem cells.
    Chen J; Yue F; Kuang S
    STAR Protoc; 2022 Dec; 3(4):101849. PubMed ID: 36595920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized protocol for single-molecule RNA FISH to visualize gene expression in
    Patel HP; Brouwer I; Lenstra TL
    STAR Protoc; 2021 Sep; 2(3):100647. PubMed ID: 34278333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol to image and quantify nucleocytoplasmic transport in cultured cells using fluorescent
    Cui H; Sepehrimanesh M; Coutee CA; Akter M; Hosain MA; Ding B
    STAR Protoc; 2022 Dec; 3(4):101813. PubMed ID: 36386872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol to analyze chromatin-bound proteins through the cell cycle using Chromoflow flow cytometry.
    Alonso-Gil D; Losada A
    STAR Protoc; 2023 Dec; 4(4):102568. PubMed ID: 37725510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting RNA-protein proximity at DNA double-strand breaks using combined fluorescence in situ hybridization with proximity ligation assay.
    Alagia A; Ketley RF; Gullerova M
    STAR Protoc; 2023 Mar; 4(1):102096. PubMed ID: 36825808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility.
    Stoecker K; Dorninger C; Daims H; Wagner M
    Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for the use of signal amplification by exchange reaction-fluorescence in situ hybridization on adult formalin-fixed paraffin-embedded mouse lung tissue.
    Warren R; Shaik A; Teubner L; Lyu H; De Langhe S
    STAR Protoc; 2023 Jun; 4(2):102353. PubMed ID: 37302070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DNA-fiber protocol for single molecule analysis of telomere (SMAT) length and extension events in cancer cells.
    Lu R; Allen JAM; Galaviz P; Pickett HA
    STAR Protoc; 2022 Mar; 3(1):101212. PubMed ID: 35265860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol to isolate live single cells while retaining spatial information by combining cell photolabeling and FACS.
    Baldominos P; Barreiro O; von Andrian U; Sirera R; Montero-Llopis P; Agudo J
    STAR Protoc; 2022 Dec; 3(4):101795. PubMed ID: 36325581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MATISSE: An analysis protocol for combining imaging mass cytometry with fluorescence microscopy to generate single-cell data.
    Krijgsman D; Sinha N; Baars MJD; van Dam S; Amini M; Vercoulen Y
    STAR Protoc; 2022 Mar; 3(1):101034. PubMed ID: 34977680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.