BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38878309)

  • 1. Ferrocene-based metal-organic frameworks with dual synergistic active sites for selectively electrochemical removal of arsenic from contaminated water.
    Shi W; Wang X; Gao F; Wang Z
    Water Res; 2024 Jun; 260():121915. PubMed ID: 38878309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Framework with a Redox-Active Bridge Enables Electrochemically Highly Selective Removal of Arsenic from Water.
    Shi W; Ma J; Gao F; Dai R; Su X; Wang Z
    Environ Sci Technol; 2023 Apr; 57(15):6342-6352. PubMed ID: 37010389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron Mesh-Based Metal Organic Framework Filter for Efficient Arsenic Removal.
    Wang D; Gilliland SE; Yi X; Logan K; Heitger DR; Lucas HR; Wang WN
    Environ Sci Technol; 2018 Apr; 52(7):4275-4284. PubMed ID: 29513011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen.
    Song Z; Garg S; Ma J; Waite TD
    Environ Sci Technol; 2020 Oct; 54(19):12081-12091. PubMed ID: 32924448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Redox-Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic.
    Kim K; Cotty S; Elbert J; Chen R; Hou CH; Su X
    Adv Mater; 2020 Feb; 32(6):e1906877. PubMed ID: 31793695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon.
    Mani P; Kim Y; Lakhera SK; Neppolian B; Choi H
    Chemosphere; 2021 Aug; 277():130225. PubMed ID: 34384167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe-based MOFs as promising adsorbents and photocatalysts for re-use water contained arsenic: Strategies and challenges.
    Malhotra M; Kaur B; Soni V; Patial S; Sharma K; Kumar R; Singh P; Thakur S; Pham PV; Ahamad T; Le QV; Nguyen VH; Raizada P
    Chemosphere; 2024 Jun; 357():141786. PubMed ID: 38537716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Groundwater-native Fe(II) oxidation prior to aeration with H
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2022 Sep; 223():119007. PubMed ID: 36044797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pre-aeration on the removal of arsenic and iron from natural groundwater in household based ceramic filters.
    Shafiquzzaman M
    J Environ Manage; 2021 Aug; 291():112681. PubMed ID: 33965703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability.
    Guo Q; Li Y; Zheng LW; Wei XY; Xu Y; Shen YW; Zhang KG; Yuan CG
    J Environ Sci (China); 2023 Jun; 128():213-223. PubMed ID: 36801036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite.
    Fang Z; Li Z; Zhang X; Pan S; Wu M; Pan B
    Water Res; 2021 Feb; 189():116673. PubMed ID: 33276212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedding Fe(0) electrocoagulation in a biologically active As(III) oxidising filter bed.
    Roy M; Kraaijeveld E; Gude JCJ; van Genuchten CM; Rietveld LC; van Halem D
    Water Res; 2024 Mar; 252():121233. PubMed ID: 38330719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system.
    Yin H; Liu L; Ma J; Zhang C; Qiu G
    Water Res; 2023 Nov; 246():120734. PubMed ID: 37862875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater.
    Jang M; Min SH; Park JK; Tlachac EJ
    Environ Sci Technol; 2007 May; 41(9):3322-8. PubMed ID: 17539544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of FeMn bimetallic ferrocene-based metal-organic frameworks to boost the catalytic efficiency for removal of organic pollutants.
    Qu C; Lv X; Wang R; Zhang R; Guo W
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17449-17458. PubMed ID: 36195810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion.
    Qin Y; Zhang M; Zhang F; Ozer SN; Feng Y; Sun W; Zhao Y; Xu Z
    J Hazard Mater; 2024 Apr; 468():133780. PubMed ID: 38401213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.