These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38878362)

  • 1. Effect of variability of mechanical properties on the predictive capabilities of vulnerable coronary plaques.
    Stefanati M; Corti A; Corino VDA; Bennett MR; Teng Z; Dubini G; Rodriguez Matas JF
    Comput Methods Programs Biomed; 2024 Sep; 254():108271. PubMed ID: 38878362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress.
    Costopoulos C; Huang Y; Brown AJ; Calvert PA; Hoole SP; West NEJ; Gillard JH; Teng Z; Bennett MR
    JACC Cardiovasc Imaging; 2017 Dec; 10(12):1472-1483. PubMed ID: 28734911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study.
    Teng Z; Brown AJ; Calvert PA; Parker RA; Obaid DR; Huang Y; Hoole SP; West NE; Gillard JH; Bennett MR
    Circ Cardiovasc Imaging; 2014 May; 7(3):461-70. PubMed ID: 24557858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging.
    Brown AJ; Teng Z; Calvert PA; Rajani NK; Hennessy O; Nerlekar N; Obaid DR; Costopoulos C; Huang Y; Hoole SP; Goddard M; West NE; Gillard JH; Bennett MR
    Circ Cardiovasc Imaging; 2016 Jun; 9(6):. PubMed ID: 27307548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Stress Profiling of Coronary Atherosclerosis: Identifying a Multifactorial Metric to Evaluate Plaque Rupture Risk.
    Doradla P; Otsuka K; Nadkarni A; Villiger M; Karanasos A; Zandvoort LJCV; Dijkstra J; Zijlstra F; Soest GV; Daemen J; Regar E; Bouma BE; Nadkarni SK
    JACC Cardiovasc Imaging; 2020 Mar; 13(3):804-816. PubMed ID: 31005542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound.
    Obaid DR; Calvert PA; Brown A; Gopalan D; West NEJ; Rudd JHF; Bennett MR
    J Cardiovasc Comput Tomogr; 2017 Nov; 11(6):455-461. PubMed ID: 28918858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between palpography and virtual histology in patients with acute coronary syndromes.
    Brugaletta S; Garcia-Garcia HM; Serruys PW; Maehara A; Farooq V; Mintz GS; de Bruyne B; Marso SP; Verheye S; Dudek D; Hamm CW; Farhat N; Schiele F; McPherson J; Lerman A; Moreno PR; Wennerblom B; Fahy M; Templin B; Morel MA; van Es GA; Stone GW
    JACC Cardiovasc Imaging; 2012 Mar; 5(3 Suppl):S19-27. PubMed ID: 22421227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coronary Computed Tomography Angiography-Specific Definitions of High-Risk Plaque Features Improve Detection of Acute Coronary Syndrome.
    Bittner DO; Mayrhofer T; Puchner SB; Lu MT; Maurovich-Horvat P; Ghemigian K; Kitslaar PH; Broersen A; Bamberg F; Truong QA; Schlett CL; Hoffmann U; Ferencik M
    Circ Cardiovasc Imaging; 2018 Aug; 11(8):e007657. PubMed ID: 30354493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical and angiographic characteristics of patients likely to have vulnerable plaques: analysis from the PROSPECT study.
    Bourantas CV; Garcia-Garcia HM; Farooq V; Maehara A; Xu K; Généreux P; Diletti R; Muramatsu T; Fahy M; Weisz G; Stone GW; Serruys PW
    JACC Cardiovasc Imaging; 2013 Dec; 6(12):1263-72. PubMed ID: 24269259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress analysis of fracture of atherosclerotic plaques: crack propagation modeling.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Kazemi-Saleh D; Sotoudeh-Anvari M
    Med Biol Eng Comput; 2017 Aug; 55(8):1389-1400. PubMed ID: 27943104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo.
    Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE: Insights From the PROSPECT Study.
    Costopoulos C; Maehara A; Huang Y; Brown AJ; Gillard JH; Teng Z; Stone GW; Bennett MR
    JACC Cardiovasc Imaging; 2020 May; 13(5):1206-1218. PubMed ID: 31326476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discordance of the areas of peak wall shear stress and tissue stress in coronary artery plaques as revealed by fluid-structure interaction finite element analysis: a case study.
    Asanuma T; Higashikuni Y; Yamashita H; Nagai R; Hisada T; Sugiura S
    Int Heart J; 2013; 54(1):54-8. PubMed ID: 23428927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics.
    Lee JM; Choi G; Koo BK; Hwang D; Park J; Zhang J; Kim KJ; Tong Y; Kim HJ; Grady L; Doh JH; Nam CW; Shin ES; Cho YS; Choi SY; Chun EJ; Choi JH; Nørgaard BL; Christiansen EH; Niemen K; Otake H; Penicka M; de Bruyne B; Kubo T; Akasaka T; Narula J; Douglas PS; Taylor CA; Kim HS
    JACC Cardiovasc Imaging; 2019 Jun; 12(6):1032-1043. PubMed ID: 29550316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plaque Ruptures Are Related to High Plaque Stress and Strain Conditions: Direct Verification by Using In Vivo OCT Rupture Data and FSI Models.
    Zhao C; Lv R; Maehara A; Wang L; Gao Z; Xu Y; Guo X; Zhu Y; Huang M; Zhang X; Zhu J; Yu B; Jia H; Mintz GS; Tang D
    Arterioscler Thromb Vasc Biol; 2024 Jul; 44(7):1617-1627. PubMed ID: 38721707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-rich Plaques Detected by Near-infrared Spectroscopy Are More Frequently Exposed to High Shear Stress.
    Hartman EMJ; De Nisco G; Kok AM; Hoogendoorn A; Coenen A; Mastik F; Korteland SA; Nieman K; Gijsen FJH; van der Steen AFW; Daemen J; Wentzel JJ
    J Cardiovasc Transl Res; 2021 Jun; 14(3):416-425. PubMed ID: 33034862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the local hemodynamic environment on the de novo development and progression of eccentric coronary atherosclerosis in humans: insights from PREDICTION.
    Papafaklis MI; Takahashi S; Antoniadis AP; Coskun AU; Tsuda M; Mizuno S; Andreou I; Nakamura S; Makita Y; Hirohata A; Saito S; Feldman CL; Stone PH
    Atherosclerosis; 2015 May; 240(1):205-11. PubMed ID: 25801012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal distribution of plaque burden and necrotic core-rich plaques in nonculprit lesions of patients presenting with acute coronary syndromes.
    Wykrzykowska JJ; Mintz GS; Garcia-Garcia HM; Maehara A; Fahy M; Xu K; Inguez A; Fajadet J; Lansky A; Templin B; Zhang Z; de Bruyne B; Weisz G; Serruys PW; Stone GW
    JACC Cardiovasc Imaging; 2012 Mar; 5(3 Suppl):S10-8. PubMed ID: 22421223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.