These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38878477)

  • 1. Mechanism of PGMs capture from spent automobile catalyst by copper from waste printed circuit boards with simultaneous pollutants transformation.
    Chen S; Song Q; Xu Z
    Waste Manag; 2024 Sep; 186():130-140. PubMed ID: 38878477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts.
    Zheng H; Ding Y; Wen Q; Zhao S; He X; Zhang S; Dong C
    Sci Total Environ; 2022 Jan; 802():149830. PubMed ID: 34464795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review.
    Liu C; Sun S; Zhu X; Tu G
    Waste Manag Res; 2021 Jan; 39(1):43-52. PubMed ID: 33198602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential and current practices of recycling waste printed circuit boards: A review of the recent progress in pyrometallurgy.
    Faraji F; Golmohammadzadeh R; Pickles CA
    J Environ Manage; 2022 Aug; 316():115242. PubMed ID: 35588669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separating and recycling metal mixture of pyrolyzed waste printed circuit boards by a combined method.
    Chen B; He J; Sun X; Zhao J; Jiang H; Zhang L
    Waste Manag; 2020 Apr; 107():113-120. PubMed ID: 32278216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic pyrolysis of waste printed circuit boards to organic bromine: reaction mechanism and comprehensive recovery.
    Li C; Liu C; Xia H; Zhang L; Liu D; Shu B
    Environ Sci Pollut Res Int; 2023 Oct; 30(49):108288-108300. PubMed ID: 37743446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorefining and electrodeposition for metal separation and purification from polymetallic concentrates after waste printed circuit board smelting.
    Xia Q; Song Q; Xu Z
    Waste Manag; 2023 Mar; 158():146-152. PubMed ID: 36709680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-treatment of diamond-wire-saw silicon kerf and spent automotive catalysts for simultaneous recovery of PGMs, REEs, Zr, and high-purity Si.
    Yang D; Yang Q; Ma W; Wang S; Lei Y
    Waste Manag; 2023 Sep; 171():237-247. PubMed ID: 37678072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production.
    Tan Q; Liu L; Yu M; Li J
    J Hazard Mater; 2020 May; 390():121892. PubMed ID: 31883733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction-Sulfurization Smelting Process of Waste Hydrogenation Catalysts, Automotive Exhaust Purifier Waste Catalysts, and Laterite Nickel Ore.
    Wang Z; Wang H; Jie X; Zhao X; Waters KE; Northwood DO; Cui S; Ma H
    ACS Omega; 2023 Oct; 8(43):40713-40728. PubMed ID: 37929153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.
    Awasthi AK; Zeng X; Li J
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of synergistic capturing platinum group metals by Fe-Sn and its mechanism.
    He X; Ding Y; Shi Z; Zhao B; Zhang C; Han F; Ren J; Zhang S
    J Environ Manage; 2024 May; 358():120847. PubMed ID: 38626486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of metals in waste printed circuit boards by flotation technology with soap collector prepared by waste oil through saponification.
    Zhu XN; Nie CC; Zhang H; Lyu XJ; Qiu J; Li L
    Waste Manag; 2019 Apr; 89():21-26. PubMed ID: 31079733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective.
    Dong Y; Mingtana N; Zan J; Lin H
    J Environ Manage; 2023 Dec; 348():119354. PubMed ID: 37864939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy.
    Trinh HB; Lee JC; Suh YJ; Lee J
    Waste Manag; 2020 Aug; 114():148-165. PubMed ID: 32673979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards.
    Xia D; Lee C; Charpentier NM; Deng Y; Yan Q; Gabriel JP
    Adv Sci (Weinh); 2024 Aug; 11(30):e2309635. PubMed ID: 38837685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery.
    Li XG; Gao Q; Jiang SQ; Nie CC; Zhu XN; Jiao TT
    J Environ Manage; 2023 Dec; 348():119288. PubMed ID: 37864943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liberation enhancement and copper enrichment improvement for waste printed circuit boards by heating pretreatment.
    Yan G; Guo J; Zhu G; Zhang Z; Zhao P; Xiangnan Z; Zhang B
    Waste Manag; 2020 Apr; 106():145-154. PubMed ID: 32217443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of leaching copper by organic agents from waste printed circuit boards in a sulfuric acid solution.
    He J; Zhang M; Chen H; Guo S; Zhu L; Xu J; Zhou K
    Chemosphere; 2022 Nov; 307(Pt 4):135924. PubMed ID: 35934095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanochemical degradation of brominated flame retardants in waste printed circuit boards by Ball Milling.
    Wang R; Zhu Z; Tan S; Guo J; Xu Z
    J Hazard Mater; 2020 Mar; 385():121509. PubMed ID: 31708288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.