BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38878632)

  • 1. Uncertainty estimation using a 3D probabilistic U-Net for segmentation with small radiotherapy clinical trial datasets.
    Chlap P; Min H; Dowling J; Field M; Cloak K; Leong T; Lee M; Chu J; Tan J; Tran P; Kron T; Sidhom M; Wiltshire K; Keats S; Kneebone A; Haworth A; Ebert MA; Vinod SK; Holloway L
    Comput Med Imaging Graph; 2024 Jun; 116():102403. PubMed ID: 38878632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case.
    Sahlsten J; Jaskari J; Wahid KA; Ahmed S; Glerean E; He R; Kann BH; Mäkitie A; Fuller CD; Naser MA; Kaski K
    medRxiv; 2023 Feb; ():. PubMed ID: 36865296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning.
    Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain.
    Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH
    Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound.
    Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct quantification of epistemic and aleatoric uncertainty in 3D U-net segmentation.
    Jones CK; Wang G; Yedavalli V; Sair H
    J Med Imaging (Bellingham); 2022 May; 9(3):034002. PubMed ID: 35692283
    [No Abstract]   [Full Text] [Related]  

  • 10. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based ultrasound auto-segmentation of the prostate with brachytherapy implanted needles.
    Hampole P; Harding T; Gillies D; Orlando N; Edirisinghe C; Mendez LC; D'Souza D; Velker V; Correa R; Helou J; Xing S; Fenster A; Hoover DA
    Med Phys; 2024 Apr; 51(4):2665-2677. PubMed ID: 37888789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty estimation- and attention-based semi-supervised models for automatically delineate clinical target volume in CBCT images of breast cancer.
    Wang Z; Cao N; Sun J; Zhang H; Zhang S; Ding J; Xie K; Gao L; Ni X
    Radiat Oncol; 2024 May; 19(1):66. PubMed ID: 38811994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets.
    Clark B; Hardcastle N; Johnston LA; Korte J
    Med Phys; 2024 Feb; ():. PubMed ID: 38376454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining The Role Of Radiation Oncologist Demographic Factors On Segmentation Quality: Insights From A Crowd-Sourced Challenge Using Bayesian Estimation.
    Wahid KA; Sahin O; Kundu S; Lin D; Alanis A; Tehami S; Kamel S; Duke S; Sherer MV; Rasmussen M; Korreman S; Fuentes D; Cislo M; Nelms BE; Christodouleas JP; Murphy JD; Mohamed ASR; He R; Naser MA; Gillespie EF; Fuller CD
    medRxiv; 2023 Sep; ():. PubMed ID: 37693394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and investigation of input channel effects: Results from a prospective imaging registry.
    Wahid KA; Ahmed S; He R; van Dijk LV; Teuwen J; McDonald BA; Salama V; Mohamed ASR; Salzillo T; Dede C; Taku N; Lai SY; Fuller CD; Naser MA
    Clin Transl Radiat Oncol; 2022 Jan; 32():6-14. PubMed ID: 34765748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network.
    Zabihollahy F; Viswanathan AN; Schmidt EJ; Lee J
    J Appl Clin Med Phys; 2022 Sep; 23(9):e13725. PubMed ID: 35894782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer.
    Kawula M; Purice D; Li M; Vivar G; Ahmadi SA; Parodi K; Belka C; Landry G; Kurz C
    Radiat Oncol; 2022 Jan; 17(1):21. PubMed ID: 35101068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model.
    Zhang Y; Chan S; Chen JH; Chang KT; Lin CY; Pan HB; Lin WC; Kwong T; Parajuli R; Mehta RS; Chien SH; Su MY
    J Digit Imaging; 2021 Aug; 34(4):877-887. PubMed ID: 34244879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.
    Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S
    Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography.
    Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D
    Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.