These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38879351)

  • 41. CRISPR/Cas9, the Powerful New Genome-Editing Tool for Putative Therapeutics in Obesity.
    Franco-Tormo MJ; Salas-Crisostomo M; Rocha NB; Budde H; Machado S; Murillo-Rodríguez E
    J Mol Neurosci; 2018 May; 65(1):10-16. PubMed ID: 29732484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Making gene editing a therapeutic reality.
    Conboy I; Murthy N; Etienne J; Robinson Z
    F1000Res; 2018; 7():. PubMed ID: 30613384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease.
    Vachey G; Déglon N
    Methods Mol Biol; 2018; 1780():463-481. PubMed ID: 29856031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR-Cas9 as a Tool in Cancer Therapy.
    Zatloukalová P; Krejčíř R; Valík D; Vojtěšek B
    Klin Onkol; 2019; 32(Supplementum 3):13-18. PubMed ID: 31627701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ji Luo Elucidates the CRISPR Gene Editing Technology, and How It May Affect Cancer Therapy in the Future.
    Luo J
    Oncology (Williston Park); 2016 Oct; 30(10):879. PubMed ID: 27753053
    [No Abstract]   [Full Text] [Related]  

  • 47. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.
    Batzir NA; Tovin A; Hendel A
    Pediatr Endocrinol Rev; 2017 Jun; 14(4):353-363. PubMed ID: 28613045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme.
    Al-Sammarraie N; Ray SK
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In recognition of the Spanish origin of CRISPR/Cas9. Implications for the treatment of familial heart disease.
    Sabater Molina M; Gimeno Blanes JR
    Rev Esp Cardiol (Engl Ed); 2024 Jul; 77(7):597-598. PubMed ID: 38382800
    [No Abstract]   [Full Text] [Related]  

  • 50. CRISPR-Cas Gene Editing to the Genetic Rescue.
    Goetzl EJ; Alpert JS
    Am J Med; 2024 May; 137(5):386-389. PubMed ID: 38281656
    [No Abstract]   [Full Text] [Related]  

  • 51. CRISPR-Cas9 technology and its application in haematological disorders.
    Zhang H; McCarty N
    Br J Haematol; 2016 Oct; 175(2):208-225. PubMed ID: 27619566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In recognition of the Spanish origin of CRISPR/Cas9. Implications for the treatment of familial heart disease. Response.
    Argirò A; Ding J; Adler E
    Rev Esp Cardiol (Engl Ed); 2024 Jul; 77(7):598-599. PubMed ID: 38555069
    [No Abstract]   [Full Text] [Related]  

  • 53. Synthetic nanoparticles for the delivery of CRISPR/Cas9 gene editing system: classification and biomedical applications.
    Zheng Q; Wang W; Zhou Y; Mo J; Chang X; Zha Z; Zha L
    Biomater Sci; 2023 Aug; 11(16):5361-5389. PubMed ID: 37381725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonviral Ex Vivo Genome Editing in Mouse Bona Fide Hematopoietic Stem Cells with CRISPR/Cas9.
    Hara H; Munkh-Erdene N; Byambaa S; Hanazono Y
    Methods Mol Biol; 2023; 2637():213-221. PubMed ID: 36773149
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR-Cas9 delivery strategies and applications: Review and update.
    Severi AA; Akbari B
    Genesis; 2024 Jun; 62(3):e23598. PubMed ID: 38727638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside.
    Humbert O; Samuelson C; Kiem HP
    Br J Haematol; 2021 Jan; 192(1):33-49. PubMed ID: 32506752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo.
    Salsman J; Masson JY; Orthwein A; Dellaire G
    Curr Gene Ther; 2017; 17(4):263-274. PubMed ID: 29173169
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CRISPR 'cousin' put to the test in landmark heart-disease trial.
    Ledford H
    Nature; 2022 Jul; 607(7920):647. PubMed ID: 35840676
    [No Abstract]   [Full Text] [Related]  

  • 60. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.