These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38879464)
1. Integrated pathway mining and selection of an artificial CYP79-mediated bypass to improve benzylisoquinoline alkaloid biosynthesis. Takenaka M; Kamasaka K; Daryong K; Tsuchikane K; Miyazawa S; Fujihana S; Hori Y; Vavricka CJ; Hosoyama A; Kawasaki H; Shirai T; Araki M; Nakagawa A; Minami H; Kondo A; Hasunuma T Microb Cell Fact; 2024 Jun; 23(1):178. PubMed ID: 38879464 [TBL] [Abstract][Full Text] [Related]
2. Mechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Vavricka CJ; Yoshida T; Kuriya Y; Takahashi S; Ogawa T; Ono F; Agari K; Kiyota H; Li J; Ishii J; Tsuge K; Minami H; Araki M; Hasunuma T; Kondo A Nat Commun; 2019 May; 10(1):2015. PubMed ID: 31043610 [TBL] [Abstract][Full Text] [Related]
3. Development of an artificial biosynthetic pathway for biosynthesis of (S)-reticuline based on HpaBC in engineered Escherichia coli. Guo D; Kong S; Sun Y; Li X; Pan H Biotechnol Bioeng; 2021 Dec; 118(12):4635-4642. PubMed ID: 34427913 [TBL] [Abstract][Full Text] [Related]
4. (R,S)-tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Nakagawa A; Matsuzaki C; Matsumura E; Koyanagi T; Katayama T; Yamamoto K; Sato F; Kumagai H; Minami H Sci Rep; 2014 Oct; 4():6695. PubMed ID: 25331563 [TBL] [Abstract][Full Text] [Related]
5. Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method. Matsumura E; Nakagawa A; Tomabechi Y; Koyanagi T; Kumagai H; Yamamoto K; Katayama T; Sato F; Minami H Biosci Biotechnol Biochem; 2017 Feb; 81(2):396-402. PubMed ID: 27740901 [TBL] [Abstract][Full Text] [Related]
6. Improvement of reticuline productivity from dopamine by using engineered Escherichia coli. Kim JS; Nakagawa A; Yamazaki Y; Matsumura E; Koyanagi T; Minami H; Katayama T; Sato F; Kumagai H Biosci Biotechnol Biochem; 2013; 77(10):2166-8. PubMed ID: 24096658 [TBL] [Abstract][Full Text] [Related]
7. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409 [TBL] [Abstract][Full Text] [Related]
8. Optimization of yeast-based production of medicinal protoberberine alkaloids. Galanie S; Smolke CD Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732 [TBL] [Abstract][Full Text] [Related]
9. Selection of the optimal tyrosine hydroxylation enzyme for (S)-reticuline production in Escherichia coli. Nakagawa A; Nakamura S; Matsumura E; Yashima Y; Takao M; Aburatani S; Yaoi K; Katayama T; Minami H Appl Microbiol Biotechnol; 2021 Jul; 105(13):5433-5447. PubMed ID: 34181032 [TBL] [Abstract][Full Text] [Related]
10. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. Narcross L; Bourgeois L; Fossati E; Burton E; Martin VJ ACS Synth Biol; 2016 Dec; 5(12):1505-1518. PubMed ID: 27442619 [TBL] [Abstract][Full Text] [Related]
12. Microbial production of plant benzylisoquinoline alkaloids. Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807 [TBL] [Abstract][Full Text] [Related]
13. A bacterial platform for fermentative production of plant alkaloids. Nakagawa A; Minami H; Kim JS; Koyanagi T; Katayama T; Sato F; Kumagai H Nat Commun; 2011; 2():326. PubMed ID: 21610729 [TBL] [Abstract][Full Text] [Related]
14. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Hafner J; Payne J; MohammadiPeyhani H; Hatzimanikatis V; Smolke C Nat Commun; 2021 Mar; 12(1):1760. PubMed ID: 33741955 [TBL] [Abstract][Full Text] [Related]
15. Microbial production of novel sulphated alkaloids for drug discovery. Matsumura E; Nakagawa A; Tomabechi Y; Ikushiro S; Sakaki T; Katayama T; Yamamoto K; Kumagai H; Sato F; Minami H Sci Rep; 2018 May; 8(1):7980. PubMed ID: 29789647 [TBL] [Abstract][Full Text] [Related]
17. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids. Pyne ME; Narcross L; Fossati E; Bourgeois L; Burton E; Gold ND; Martin VJ Methods Enzymol; 2016; 575():195-224. PubMed ID: 27417930 [TBL] [Abstract][Full Text] [Related]
18. Complete biosynthesis of the bisbenzylisoquinoline alkaloids guattegaumerine and berbamunine in yeast. Payne JT; Valentic TR; Smolke CD Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903659 [TBL] [Abstract][Full Text] [Related]
19. Microbial Factories for the Production of Benzylisoquinoline Alkaloids. Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900 [TBL] [Abstract][Full Text] [Related]
20. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Hawkins KM; Smolke CD Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]