These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 38879554)
1. Roadblocks confronting widespread dissemination and deployment of Organs on Chips. Alver CG; Drabbe E; Ishahak M; Agarwal A Nat Commun; 2024 Jun; 15(1):5118. PubMed ID: 38879554 [TBL] [Abstract][Full Text] [Related]
2. Human organ chips for regenerative pharmacology. Goyal G; Belgur C; Ingber DE Pharmacol Res Perspect; 2024 Feb; 12(1):e01159. PubMed ID: 38149766 [TBL] [Abstract][Full Text] [Related]
3. Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. Low LA; Tagle DA Adv Exp Med Biol; 2017; 1031():405-415. PubMed ID: 29214585 [TBL] [Abstract][Full Text] [Related]
4. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Watson DE; Hunziker R; Wikswo JP Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799 [TBL] [Abstract][Full Text] [Related]
5. Microphysiological Systems: Design, Fabrication, and Applications. Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830 [TBL] [Abstract][Full Text] [Related]
6. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. Marx U; Akabane T; Andersson TB; Baker E; Beilmann M; Beken S; Brendler-Schwaab S; Cirit M; David R; Dehne EM; Durieux I; Ewart L; Fitzpatrick SC; Frey O; Fuchs F; Griffith LG; Hamilton GA; Hartung T; Hoeng J; Hogberg H; Hughes DJ; Ingber DE; Iskandar A; Kanamori T; Kojima H; Kuehnl J; Leist M; Li B; Loskill P; Mendrick DL; Neumann T; Pallocca G; Rusyn I; Smirnova L; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tsyb S; Trapecar M; Van de Water B; Van den Eijnden-van Raaij J; Vulto P; Watanabe K; Wolf A; Zhou X; Roth A ALTEX; 2020; 37(3):365-394. PubMed ID: 32113184 [TBL] [Abstract][Full Text] [Related]
7. Organs-on-chips: a decade of innovation. Strelez C; Jiang HY; Mumenthaler SM Trends Biotechnol; 2023 Mar; 41(3):278-280. PubMed ID: 36658006 [TBL] [Abstract][Full Text] [Related]
8. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Hargrove-Grimes P; Low LA; Tagle DA Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142 [TBL] [Abstract][Full Text] [Related]
9. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective. Ewart L; Fabre K; Chakilam A; Dragan Y; Duignan DB; Eswaraka J; Gan J; Guzzie-Peck P; Otieno M; Jeong CG; Keller DA; de Morais SM; Phillips JA; Proctor W; Sura R; Van Vleet T; Watson D; Will Y; Tagle D; Berridge B Exp Biol Med (Maywood); 2017 Oct; 242(16):1579-1585. PubMed ID: 28622731 [TBL] [Abstract][Full Text] [Related]
10. New horizons of microphysiological systems: India forging its path in human-relevant research. Parvatam S; Mahadik K; Banerjee A; Patil K; Radha V; Rao M Biol Open; 2023 Apr; 12(4):. PubMed ID: 37070566 [TBL] [Abstract][Full Text] [Related]
11. Imaging microphysiological systems: a review. Peel S; Jackman M Am J Physiol Cell Physiol; 2021 May; 320(5):C669-C680. PubMed ID: 33356942 [TBL] [Abstract][Full Text] [Related]
12. Organs-on-chips technologies - A guide from disease models to opportunities for drug development. Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819 [TBL] [Abstract][Full Text] [Related]
13. Organ-on-a-Chip: A New Paradigm for Drug Development. Ma C; Peng Y; Li H; Chen W Trends Pharmacol Sci; 2021 Feb; 42(2):119-133. PubMed ID: 33341248 [TBL] [Abstract][Full Text] [Related]
14. Organ-on-a-chip technology: turning its potential for clinical benefit into reality. Haddrick M; Simpson PB Drug Discov Today; 2019 May; 24(5):1217-1223. PubMed ID: 30880172 [TBL] [Abstract][Full Text] [Related]
15. Organs-on-a-Chip. Low LA; Sutherland M; Lumelsky N; Selimovic S; Lundberg MS; Tagle DA Adv Exp Med Biol; 2020; 1230():27-42. PubMed ID: 32285363 [TBL] [Abstract][Full Text] [Related]
16. Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges. Irrechukwu O; Yeager R; David R; Ekert J; Saravanakumar A; Choi CK ALTEX; 2023; 40(3):485-518. PubMed ID: 36648096 [TBL] [Abstract][Full Text] [Related]
17. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems. Hughes DJ; Kostrzewski T; Sceats EL Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617 [TBL] [Abstract][Full Text] [Related]
18. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Baker TK; Van Vleet TR; Mahalingaiah PK; Grandhi TSP; Evers R; Ekert J; Gosset JR; Chacko SA; Kopec AK Drug Metab Dispos; 2024 Feb; 52(3):198-209. PubMed ID: 38123948 [TBL] [Abstract][Full Text] [Related]
19. Liver microphysiological platforms for drug metabolism applications. Kulsharova G; Kurmangaliyeva A Cell Prolif; 2021 Sep; 54(9):e13099. PubMed ID: 34291515 [TBL] [Abstract][Full Text] [Related]
20. Tailoring biomaterials for biomimetic organs-on-chips. Sun L; Bian F; Xu D; Luo Y; Wang Y; Zhao Y Mater Horiz; 2023 Oct; 10(11):4724-4745. PubMed ID: 37697735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]